Advertisement

Theoretical and Mathematical Physics

, Volume 179, Issue 3, pp 729–746 | Cite as

Eigenstates of the quantum Penning-Ioffe nanotrap at resonance

  • M. V. KarasevEmail author
  • E. M. Novikova
Article

Abstract

We discuss the choice of physical parameters of a quantum Penning nanotrap under the action of a perturbing inhomogeneous Ioffe magnetic field and also the role of frequency resonance modes. We present a general scheme for constructing the asymptotic behavior of the eigenstates by the generalized geometric quantization method and obtain the reproducing measure in the integral representation of eigenfunctions.

Keywords

nanotrap resonance quantum averaging symmetry algebra irreducible representation reproducing measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Brown and G. Gabrielse, Phys. Rev. A, 25, 2423–2425 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    G. Gabrielse, Phys. Rev. A, 27, 2277–2290 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    G. Gabrielse, Phys. Rev. A, 29, 462–469 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    G. Gabrielse and F. C. Mackintosh, Internat. J. Mass Spectrom. Ion Processes, 57, 1–17 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    G. Gabrielse, L. Haarsma, and S. L. Rolston, Internat. J. Mass Spectrom. Ion Processes, 88, 319–332 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    G. Gabrielse and H. Dehmelt, “Geonium without a magnetic bottle — a new generation,” in: Precision Measurement and Fundamental Constants: II (Natl. Bur. Stds., Spec. Publ., Vol. 617, B. N. Taylor and W. D. Phillips, eds.), Government Printing Office, Washington, D. C. (1984), pp. 219–221.Google Scholar
  7. 7.
    D. Segal and M. Shapiro, Nano Lett., 6, 1622–1626 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    K. Blaum, Yu. N. Novikov, and G. Werth, Contemp. Phys., 51, 149–175 (2010); arXiv:0909.1095v1 [physics.atom-ph] (2009).ADSCrossRefGoogle Scholar
  9. 9.
    F. Herfurth and K. Blaum, eds., Trapped Charged Particles and Fundamental Interactions (Lect. Notes Phys., Vol. 749), Springer, Berlin (2008).Google Scholar
  10. 10.
    P. K. Ghosh, Ion Traps, Clarendon, Oxford (1995).Google Scholar
  11. 11.
    F. G. Major, V. Gheorghe, and G. Werth, Charged Particle Traps, Springer, Berlin (2002).Google Scholar
  12. 12.
    S. Dhar, O. Brandt, M. Ramsteiner, V. F. Sapega, and K. H. Ploog, Phys. Rev. Lett., 94, 037205 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    M. V. Karasev and V. P. Maslov, Russ. Math. Surveys, 39, 133–205 (1984).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    M. V. Karasev, “Birkhoff resonances and quantum ray method,” in: Proc. Intl. Seminar “Days on Diffraction”- 2004 (St. Petersburg, Russia, 29 June–2 July 2004), Universitas Petropolitana, St. Petersburg, pp. 114–126.Google Scholar
  15. 15.
    M. V. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances: I,” in: Quantum Algebras and Poisson Geometry in Mathematical Physics (AMS Transl. Ser. 2, Vol. 216, M. V. Karasev, ed.), Amer. Math. Soc., Providence, R. I. (2005), pp. 1–18; arXiv:math/0412542v2 (2004); Adv. Stud. Contemp. Math., 11, 33–56 (2005); Russ. J. Math. Phys., 13, 131–150 (2006).Google Scholar
  16. 16.
    M. V. Karasev and E. M. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding,” in: Coherent Transform, Quantization, and Poisson Geometry (AMS Transl. Ser. 2, Vol. 187, M. V. Karasev, ed.), Amer. Math. Soc., Providence, R. I. (1998), pp. 1–202.Google Scholar
  17. 17.
    M. V. Karasev, Lett. Math. Phys., 56, 229–269 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    M. V. Karasev and E. M. Novikova, “Algebras with polynomial commutation relations for a quantum particle in electric and magnetic fields,” in: Quantum Algebras and Poisson Geometry in Mathematical Physics (AMS Transl. Ser. 2, Vol. 216, M. V. Karasev, ed.), Amer. Math. Soc., Providence, R. I. (2005), pp. 19–135; M. V. Karasev and E. M. Novikova, Theor. Math. Phys., 108, 1119–1159 (1996).Google Scholar
  19. 19.
    M. V. Karasev, J. Soviet Math., 59, 1053–1062 (1992); “Simple quantization formula,” in: Symplectic Geometry and Mathematical Physics (Prog. Math., Vol. 99, P. Donato, C. Duval, J. Elhadad, and G. M. Tuynman, eds.), Birkhäuser, Boston, Mass. (1991), pp. 234–243; Russ. J. Math. Phys., 3, 393–400 (1995).ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. V. Karasev and E. M. Novikova, J. Math. Sci., 95, 2703–2798 (1999).CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    M. V. Karasev and E. M. Novikova, Russ. J. Math. Phys., 20, 283–294 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions, McGraw-Hill, New York (1953).Google Scholar
  23. 23.
    D. J. Fernández and M. Velázquez, J. Phys. A, 42, 085304 (2009).ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Genkin and E. Lindroth, J. Phys. A, 42, 275305 (2009).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Higher School of EconomicsMoscowRussia

Personalised recommendations