Theoretical and Mathematical Physics

, Volume 179, Issue 3, pp 637–648 | Cite as

Rational interpolation and solitons

Article

Abstract

We consider the general construction scheme for second-order spectral problems, for which the semiclassical approximation is exact. We show that the inverse spectral problem in this case reduces to the classical interpolation problem for meromorphic functions.

Keywords

inverse spectral problem semiclassical approximation interpolation of meromorphic functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Hille, Ordinary Differential Equations in the Complex Domain, Wiley, New York (1976).MATHGoogle Scholar
  2. 2.
    A. B. Shabat, “On one interpolation problem,” Paper presented at the X International Scientific Conference “Order Analyis and Related Questions of Mathematical Modeling,” Vladivostok-Nov. Tsei, Russia, 14–20 July 2013.Google Scholar
  3. 3.
    A. B. Shabat, “Symmetries of Spectral Problems,” in: Integrability (Lect. Notes. Phys., Vol. 767, A. V. Mikhailov, ed.), Springer, Berlin (2009), pp. 139–173.CrossRefGoogle Scholar
  4. 4.
    V. É. Adler and A. B. Shabat, Theor. Math. Phys., 153, 1373–1387 (2007).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    L. Martínez Alonso and A. B. Shabat, Theor. Math. Phys., 140, 1073–1085 (2004).CrossRefMATHGoogle Scholar
  6. 6.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russ. Math. Surveys, 31, 59–146 (1976).ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    G. A. Baker Jr. and P. Graves-Morris, “Extensions of Padé approximants,” in: Padé Approximants (Encycl. Math. and Its Appl., Vol. 59), Cambridge Univ. Press, Cambridge (1996), pp. 335–414.CrossRefGoogle Scholar
  8. 8.
    J. Drach, Compt. Rend. Acad. Sci., 168, 337–340 (1919).MATHGoogle Scholar
  9. 9.
    A. B. Shabat, “On potentials with a zero reflection coefficient,” in: Dynamics of Condensed Matter, Vol. 5, Inst. of Hydrodynamics, Sib. Br., USSR Acad. Sci., Novosibirsk (1970), pp. 130–145.Google Scholar
  10. 10.
    V. É. Adler, “N-solition solution of the Korteweg-de Vries equation,” in: Asymptotic Methods of Mathematical Physics, BNTs, Urals Br., USSR Acad. Sci., Ufa (1989), pp. 3–8.Google Scholar
  11. 11.
    D. H. Peregrine, J. Austral. Math. Soc. Ser. B, 25, 16–43 (1983).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    V. E. Zakharov and A. A. Gelash, Phys. Rev. Lett., 111, 054101 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    V. E. Zakharov and A. B. Shabat, Soviet Phys. JETP, 34, 62–69 (1972).ADSMathSciNetGoogle Scholar
  14. 14.
    V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP, 37, 823–828 (1973).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Aliev Karachaev-Cherkess State UniversityKarachaevskRussia
  2. 2.Landau Institute for Theoretical PhysicsRAS, ChernogolovkaMoscow OblastRussia

Personalised recommendations