Advertisement

Theoretical and Mathematical Physics

, Volume 177, Issue 3, pp 1655–1679 | Cite as

Formal diagonalization of a discrete lax operator and conservation laws and symmetries of dynamical systems

  • I. T. HabibullinEmail author
  • M. V. Yangubaeva
Article

Abstract

We consider the problem of constructing a formal asymptotic expansion in the spectral parameter for an eigenfunction of a discrete linear operator. We propose a method for constructing an expansion that allows obtaining conservation laws of discrete dynamical systems associated with a given linear operator. As illustrative examples, we consider known nonlinear models such as the discrete potential Kortewegde Vries equation, the discrete version of the derivative nonlinear Schrödinger equation, the Veselov-Shabat dressing chain, and others. We describe the infinite set of conservation laws for the discrete Toda chain corresponding to the Lie algebra A 1 (1) . We find new examples of integrable systems of equations on a square lattice.

Keywords

Lax pair asymptotic expansion conservation law symmetry equations on a quad graph discrete nonlinear Schrödinger equation dressing method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New-York (1955).zbMATHGoogle Scholar
  2. 2.
    V. Vazov, Asymptotic Expansions of Solutions of Ordinary Differential Equations [in Russian], Mir, Moscow (1968).Google Scholar
  3. 3.
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM Stud. Appl. Math., Vol. 4), Vol. 4, SIAM, Philadelphia (1981).CrossRefzbMATHGoogle Scholar
  4. 4.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov Theory of Solitons: The Inverse Scattering Method, Plenum, New York (1984).Google Scholar
  5. 5.
    L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (1987).zbMATHGoogle Scholar
  6. 6.
    V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 8, 226–235 (1974).CrossRefzbMATHGoogle Scholar
  7. 7.
    V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 13, 166–174 (1979).MathSciNetGoogle Scholar
  8. 8.
    V. G. Drinfeld and V. V. Sokolov, J. Soviet Math., 30, 1975–2036 (1985).CrossRefGoogle Scholar
  9. 9.
    V. Caudrelier, Internat. J. Geom. Meth. Mod. Phys., 5, 1085–1108 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    I. Habibullin and A. Kundu, Nucl. Phys. B, 795, 549–568 (2008); arXiv:0709.4611v2 [hep-th] (2007).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    D. J. Zhang, J. W. Cheng, and Y. Y. Sun, “Deriving conservation laws for ABS lattice equations from Lax pairs,” arXiv:1210.3454v1 [nlin.SI] (2012).Google Scholar
  12. 12.
    J. W. Cheng and D. J. Zhang, “Conservation laws of some lattice equations,” arXiv:1212.2319v1 [nlin.SI] (2012).Google Scholar
  13. 13.
    A. V. Mikhailov, “Formal diagonalisation of Darboux transformation and conservation laws of integrable PDEs, PDΔEs, and PΔEs,” Presentation at Intl.Workshop “Geometric Structures in Integrable Systems,” Moscow, 30 October–2 November 2012, http://www.mathnet.ru/php/presentation.phtml?optionlang=eng&presentid=5934 (2012).Google Scholar
  14. 14.
    R. N. Garifullin, A. V. Mikhailov, and R. I. Yamilov, “A quad graph equation with nonstandard generalized symmetry structure,” (in preparation).Google Scholar
  15. 15.
    I. T. Khabibullin, J. Soviet Math., 40, 108–115 (1988).CrossRefzbMATHGoogle Scholar
  16. 16.
    A. B. Shabat, “Nonlinear evolution equations and the Riemann problem [in Russian],” in: Works of the All-Union Conference on Partial Differential Equations, Dedicated to the 75th Anniversary of the Birth of Academician I. G. Petrovskii, Moscow Univ. Press, Moscow (1978), pp. 242–245.Google Scholar
  17. 17.
    F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York (2000).Google Scholar
  18. 18.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, 1–63 (1987).ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    A. V. Mikhailov, “From automorphic Lie algebras to discrete integrable systems,” Seminar talk in “Discrete Integrable Systems,” Isaac Newton Inst. Math. Sci., Cambridge, 17 June 2009, http://www.newton.ac.uk/programmes/DIS/seminars/2009061714001.html (2009).Google Scholar
  20. 20.
    R. N. Garifullin, I. T. Habibullin, and M. V. Yangubaeva, SIGMA, 1208, 062 (2012).MathSciNetGoogle Scholar
  21. 21.
    H. D. Wahlquist and F. B. Estabrook, Phys. Rev. Lett., 31, 1386–1390 (1973).ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    A. G. Rasin, J. Phys. A, 43, 235201; arXiv:1001.0724v1 [nlin.SI] (2010).ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    A. V. Mikhailov, J. P. Wang, and P. Xenitidis, Theor. Math. Phys., 167, 421–443 (2011).CrossRefzbMATHGoogle Scholar
  24. 24.
    F.W. Nijhoff, G. R.W. Quispel, and H.W. Capel, Phys. Lett. A, 97, 125–128 (1983).ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    D. Levi and R. I. Yamilov, J. Phys. A, 42, 454012 (2009); arXiv:0902.4421v1 [nlin.SI] (2009).ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    M. Toda, Proc. Theoret. Phys. Suppl., 45, 174–200 (1970).ADSCrossRefGoogle Scholar
  27. 27.
    A. B. Shabat and R. I. Yamilov, Leningrad Math. J., 2, 377–400 (1991).zbMATHMathSciNetGoogle Scholar
  28. 28.
    A. Shabat, Inverse Problems, 8, 303–308 (1992).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    A. P. Veselov and A. B. Shabat, Funct. Anal. Appl., 27, 81–96 (1993).CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    M. J. Ablowitz and M. J. Ladik, J. Math. Phys., 16, 598–603 (1975).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    F. Pempinelli, M. Boiti, and J. Leon, “Bäcklund and Darboux transformation for the Ablowitz-Ladik spectral problem,” in: Nonlinear Physics: Theory and Experiment (Lecce, Italy, 29 June–7 July 1995, E. Alfinito, M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, Singapore (1996), pp. 261–268.Google Scholar
  32. 32.
    S. V. Manakov, Sov. JETP, 38, 248–253 (1974).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Mathematics with Computing Center, Ufa Science CenterRASUfaRussia

Personalised recommendations