Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cohomological and Poisson structures and integrable hierarchies in tautological subbundles for Birkhoff strata of the Sato Grassmannian

Abstract

We consider cohomological and Poisson structures associated with the special tautological subbundles \(TB_{W_{1,2, \ldots n} }\) for the Birkhoff strata of the Sato Grassmannian. We show that the tangent bundles of \(TB_{W_{1,2, \ldots n} }\) are isomorphic to the linear spaces of two-coboundaries with vanishing Harrison cohomology modules. A special class of two-coboundaries is provided by a system of integrable quasilinear partial differential equations. For the big cell, it is the hierarchy of dispersionless Kadomtsev-Petvishvili (dKP) equations. We also demonstrate that the families of ideals for algebraic varieties in \(TB_{W_{1,2, \ldots n} }\) can be viewed as Poisson ideals. This observation establishes a relation between families of algebraic curves in \(TB_{W_{\hat S} }\) and coisotropic deformations of such curves of zero and nonzero genus described by hierarchies of systems of hydrodynamic type; the dKP hierarchy is such a hierarchy. We note the interrelation between cohomological and Poisson structures.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. G. Konopelchenko and G. Ortenzi, “Birkhoff strata of Sato Grassmannian and algebraic curves,” arXiv:1005.2053v3 [math-ph] (2010).

  2. 2.

    B. G. Konopelchenko and G. Ortenzi, J. Phys. A, 44, 465201 (2011); arXiv:1102.0700v2 [math-ph] (2011).

  3. 3.

    B. G. Konopelchenko and G. Ortenzi, Theor. Math. Phys., 167, 785–799 (2011).

  4. 4.

    A. Pressley and G. Segal, Loop Groups, Clarendon, Oxford (1986).

  5. 5.

    G. Segal and G. Wilson, Inst. Hautes Études Sci. Publ. Math., 61, 5–65 (1985).

  6. 6.

    W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. 1, Cambridge Univ. Press, New York (1947).

  7. 7.

    I. R. Shafarevich, Basics of Algebraic Geometry [in Russian], Nauka, Moscow (1988); English transl. prev. ed.: Basic Algebraic Geometry, Vol. 1, Springer, Berlin (1977).

  8. 8.

    P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York (1978).

  9. 9.

    J. Harris, Algebraic Geometry: A First Course (Grad. Texts Math., Vol. 133), Springer, Berlin (1992).

  10. 10.

    V. E. Zakharov, Funct. Anal. Appl., 14, 89–98 (1980).

  11. 11.

    I. M. Krichever, Funct. Anal. Appl., 22, 200–213 (1988).

  12. 12.

    Y. Kodama, Phys. Lett. A, 129, 223–226 (1988).

  13. 13.

    K. Takasaki and T. Takebe, Internat. J. Mod. Phys. A, 7(Suppl. 1B), 889–922 (1992); arXiv:hep-th/9112046v2 (1991).

  14. 14.

    I. M. Krichever, Comm. Pure Appl. Math., 47, 437–475 (1994).

  15. 15.

    B. G. Konopelchenko and F. Magri, Commun. Math. Phys., 274, 627–658 (2007); arXiv:nlin/0606069v2 (2006).

  16. 16.

    G. Hochschild, Ann. Math. (2), 46, 58–67 (1945).

  17. 17.

    D. K. Harrison, Trans. Amer. Math. Soc., 104, 191–204 (1962).

  18. 18.

    M. Gerstenhaber, Ann. Math. (2), 79, 59–103 (1964).

  19. 19.

    A. Nijenhuis and R. W. Richardson Jr., J. Algebra, 9, 42–53 (1968).

  20. 20.

    M. Barr, J. Algebra, 8, 314–323 (1968).

  21. 21.

    V. P. Palamodov, Russ. Math. Surveys, 31, 129–197 (1976).

  22. 22.

    M. Schlessinger and J. Stasheff, J. Pure Appl. Algebra, 38, 313–322 (1985).

  23. 23.

    S. Gutt, Lett. Math. Phys., 39, 157–162 (1997).

  24. 24.

    M. Kontsevich, Lett. Math. Phys., 56, 271–294 (2001).

  25. 25.

    C. Frønsdal, “Harrison cohomology and abelian deformation quantization on algebraic varieties,” in: Deformation Quantization (IRMA Lect. Math. Theoret. Phys., Vol. 1, G. Halbout, ed.), de Gruyter, Berlin (2002), pp. 149–161.

  26. 26.

    Y. Kodama and B. G. Konopelchenko, J. Phys. A, 35, L489–L500 (2002).

  27. 27.

    A. Weinstein, J. Math. Soc. Japan, 40, 705–727 (1988).

  28. 28.

    A. Givental and K. Bumsig, Commun. Math. Phys., 168, 609–641 (1995); arXiv:hep-th/9312096v1 (1993).

  29. 29.

    B. G. Konopelchenko and G. Ortenzi, J. Phys. A, 42, 415207 (2009).

  30. 30.

    B. G. Konopelchenko and F. Magri, Theor. Math. Phys., 151, 803–819 (2007).

Download references

Author information

Correspondence to B. G. Konopelchenko.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 177, No. 2, pp. 231–246, November, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konopelchenko, B.G., Ortenzi, G. Cohomological and Poisson structures and integrable hierarchies in tautological subbundles for Birkhoff strata of the Sato Grassmannian. Theor Math Phys 177, 1479–1491 (2013). https://doi.org/10.1007/s11232-013-0117-y

Download citation

Keywords

  • Birkhoff stratum
  • Harrison cohomology
  • integrable system