Advertisement

Theoretical and Mathematical Physics

, Volume 176, Issue 1, pp 861–872 | Cite as

Holographic estimation of multiplicity and the collision of membranes in modified AdS5 spaces

  • I. Ya. Aref’evaEmail author
  • E. O. Pozdeeva
  • T. O. Pozdeeva
Article

Abstract

The quark-gluon plasma formed as a result of heavy-ion collisions is currently investigated actively both theoretically and experimentally. According to the holographic approach, forming a quark-gluon plasma in the four-dimensional world is associated with creating black holes in a five-dimensional anti-de Sitter (AdS) space. The multiplicity of particles produced in heavy-ion collisions is then determined by the entropy of the five-dimensional black hole, which is estimated by the area of the trapped surface. In this approach, we can model the dependence of the entropy on the energy of the colliding ions and thus the dependence of the multiplicity on the energy, and we can also compare the theoretical results with experimental data. To obtain a variety of model dependences on the energy, we consider the formation of black holes in modified AdS spaces, namely, in AdS spaces with different b factors. We find dynamics of the change of the trapped surface area depending on the energy for each investigated space.

Keywords

anti-de Sitter space black hole trapped surface heavy-ion collision particle creation multiplicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Maldacena, Adv. Theoret. Math. Phys., 2, 231–252 (1998); arXiv:hep-th/9711200v3 (1997).MathSciNetADSzbMATHGoogle Scholar
  2. 2.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B, 428, 105–114 (1998); arXiv:hep-th/9802109v2 (1998).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    E. Witten, Adv. Theoret. Math. Phys., 2, 253–291 (1998); arXiv:hep-th/9802150v2 (1998).MathSciNetADSzbMATHGoogle Scholar
  4. 4.
    I. Aref’efa, PoS (ICMP 2012), 2012, 025 (2012); arXiv:1102.4150v1 [hep-th] (2011).Google Scholar
  5. 5.
    S. S. Gubser, S. S. Pufu, and A. Yarom, Phys. Rev. D, 78, 066014 (2008); arXiv:0805.1551v1 [hep-th] (2008); JHEP, 0911, 050 (2009); arXiv:0902.4062v1 [hep-th] (2009).ADSCrossRefGoogle Scholar
  6. 6.
    J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, JHEP, 0807, 100 (2008); arXiv:0805.2927v3 [hep-th] (2008).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    L. Álvarez-Gaumé, C. Gómez, A. Sabio Vera, A. Tavanfar, and M. A. Vázquez-Mozo, JHEP, 0902, 009 (2009); arXiv:0811.3969v1 [hep-th] (2008).CrossRefGoogle Scholar
  8. 8.
    P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett., 102, 211601 (2009); arXiv:0812.2053v2 [hep-th] (2008).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    S. Lin and E. Shuryak, Phys. Rev. D, 79, 124015 (2009); arXiv:0902.1508v2 [hep-th] (2009); 83, 045025 (2011); arXiv:1011.1918v2 [hep-th] (2010).ADSCrossRefGoogle Scholar
  10. 10.
    I. Y. Aref’eva, A. A. Bagrov, and E. A. Guseva, JHEP, 0912, 009 (2009); arXiv:0905.1087v4 [hep-th] (2009); I. Y. Aref’eva, A. A. Bagrov, and L. V. Joukovskaya, JHEP, 1003, 002 (2010); arXiv:0909.1294v2 [hep-th] (2009); Theor. Math. Phys., 161, 1647–1662 (2009).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett., 106, 021601 (2011); arXiv:1011.3562v1 [hep-th] (2010).ADSCrossRefGoogle Scholar
  12. 12.
    E. Kiritsis and A. Taliotis, JHEP, 1204, 065 (2012); arXiv:1111.1931v2 [hep-ph] (2011); arXiv:1111.1931v2 [hep-ph] (2011); A. Taliotis, “Extra dimensions, black holes, and fireballs at the LHC,” arXiv:1212.0528v2 [hep-th] (2012).ADSCrossRefGoogle Scholar
  13. 13.
    I. Y. Aref’eva, A. A. Bagrov, and E. O. Pozdeeva, JHEP, 1205, 117 (2012); arXiv:1201.6542v2 [hep-th] (2012).ADSCrossRefGoogle Scholar
  14. 14.
    V. Balasubramanian, A. Bernamonti, J. de Boer, N. B. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, Phys. Rev. D, 84, 026010 (2011); arXiv:1103.2683v1 [hep-th] (2011).ADSCrossRefGoogle Scholar
  15. 15.
    R. Callan, J.-Y. He, and M. Headrick, JHEP, 1206, 081 (2012); arXiv:1204.2309v1 [hep-th] (2012).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    I. Ya. Aref’eva and I. V. Volovich, Theor. Math. Phys., 174, 186–196 (2013).CrossRefGoogle Scholar
  17. 17.
    K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett., 105, 252301 (2010); arXiv:1011.3916v3 [nucl-ex] (2010).ADSCrossRefGoogle Scholar
  18. 18.
    I. Ya. Aref’eva, Phys. Part. Nucl., 41, 835–843 (2010); arXiv:0912.5481v1 [hep-th] (2009).CrossRefGoogle Scholar
  19. 19.
    M. Hotta and M. Tanaka, Class. Q. Grav., 10, 307–314 (1993).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J. Podolský and J. B. Griffiths, Phys. Lett. A, 261, 1–4 (1999); arXiv:gr-qc/9908008v1 (1999); J. Podolsky, “Exact impulsive gravitational waves in spacetimes of constant curvature,” in: Gravitation: Following the Prague Inspiration (O. Semerák, J. Podolský, and M. Žofka, eds.), World Scientific, Singapore (2002), pp. 205–246; arXiv:gr-qc/0201029v1 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    K. Sfetsos, Nucl. Phys. B, 436, 721–745 (1995); arXiv:hep-th/9408169v3 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    I. Ya. Aref’eva, A. A. Bagrov, and L. V. Joukovskaya, St. Petersburg Math. J., 22, 337–345 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    T. Dray and G. ’t Hooft, Nucl. Phys. B, 253, 173–188 (1985); V. Ferrari, P. Pendenza, and G. Veneziano, Gen. Relat. Grav., 20, 1185–1191 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. Ya. Aref’eva
    • 1
    Email author
  • E. O. Pozdeeva
    • 2
  • T. O. Pozdeeva
    • 3
  1. 1.Steklov Mathematical InstituteRASMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations