Advertisement

Theoretical and Mathematical Physics

, Volume 174, Issue 2, pp 186–196 | Cite as

Holographic thermalization

  • I. Ya. Arefeva
  • I. V. Volovich
Article

Abstract

We consider the transition of a quantum field system toward the state of thermal equilibrium based on the holographic description using the duality between the quantum field system in the d-dimensional Minkowski space and the gravity theory in the (d+1)-dimensional anti-de Sitter space. In this construction, the thermalization in the d-dimensional space is described in the holographic language as the formation of a black hole in the (d+1)-dimensional space. We use a holographic model of thermalization of the quark-gluon plasma describing the black hole formation by the Vaidya metric. We show that evaporation of the black hole, also modeled by the Vaidya metric, leads to an interesting effect in the d-dimensional space: thermalization occurs only at small distances and is impossible in the infrared region. In the considered model, the thermal behavior at small distances is possible only during a certain time, after which the dethermalization process begins.

Keywords

AdS/CFT correspondence thermalization dethermalization holography holographic description of heavy-ion collisions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Adams et al. (STAR Collaboration), Nucl. Phys. A, 757, 102–183 (2005); arXiv:nucl-ex/0501009v3 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    M. Gyulassy and L. McLerran, Nucl. Phys. A, 750, 30–63 (2005); arXiv:nucl-th/0405013v2 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    E. V. Shuryak, Nucl. Phys. A, 750, 64–83 (2005); arXiv:hep-ph/0405066v1 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    E. Lancu, “QCD in heavy ions collisions,” arXiv:1205.0579v1 [hep-ph] (2012).Google Scholar
  5. 5.
    N. N. Bogolyubov, Stud. Stat. Mech., 1, 1–118 (1962).Google Scholar
  6. 6.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Consultants Bureau, New York (1974).Google Scholar
  7. 7.
    V. V. Kozlov, Gibbs Ensemble and Nonequilibrium Statistical Mechanics [in Russian], RKhD, Moscow (2008).Google Scholar
  8. 8.
    V. S. Vladimirov, Proc. Steklov Inst. Math., 61, 3–158 (1961).Google Scholar
  9. 9.
    E. Fermi, Progr. Theoret. Phys., 5, 570–583 (1950).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    L. D. Landau, Izv. Akad. Nauk SSSR. Ser. Fiz., 17, 51–64 (1953).Google Scholar
  11. 11.
    F. Gelis, “The early stages of a high energy heavy ion collision,” arXiv:1110.1544v1 [hep-ph] (2011).Google Scholar
  12. 12.
    B. Müller and A. Schäfer, “Entropy creation in relativistic heavy ion collisions,” arXiv:1110.2378v1 [hep-ph] (2011)Google Scholar
  13. 13.
    I. V. Volovich, Theor. Math. Phys., 164, 1128–1135 (2010).MATHCrossRefGoogle Scholar
  14. 14.
    P. M. Chesler and D. Teaney, “Dynamical Hawking radiation and holographic thermalization,” arXiv: 1112.6196v1 [hep-th] (2011).Google Scholar
  15. 15.
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string duality, hot QCD, and heavy ion collisions,” arXiv:1101.0618v2 [hep-th] (2011).Google Scholar
  16. 16.
    V. Balasubramanian and S. F. Ross, Phys. Rev. D, 61, 044007 (2000); arXiv:hep-th/9906226v1 (1999).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    I. Ya. Aref’eva, Phys. Part. Nucl., 41, 835–843 (2010); arXiv:0912.5481v1 [hep-th] (2009).CrossRefGoogle Scholar
  18. 18.
    S. S. Gubser, S. S. Pufu, and A. Yarom, Phys. Rev. D, 78, 066014 (2008); arXiv:0805.1551v1 [hep-th] (2008).ADSCrossRefGoogle Scholar
  19. 19.
    S. S. Gubser, S. S. Pufu, and A. Yarom, JHEP, 0911, 050 (2009); arXiv:0902.4062v1 [hep-th] (2009).ADSCrossRefGoogle Scholar
  20. 20.
    L. Alvarez-Gaume, C. Gomez, A. Sabio Vera, A. Tavanfar, and M. A. Vazquez-Mozo, JHEP, 0902, 009 (2009); arXiv:0811.3969v1 [hep-th] (2008).ADSCrossRefGoogle Scholar
  21. 21.
    S. Lin and E. Shuryak, Phys. Rev. D, 79, 124015 (2009); arXiv:0902.1508v2 [hep-th] (2009).ADSCrossRefGoogle Scholar
  22. 22.
    P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett., 106, 021601 (2011); arXiv:1011.3562v1 [hep-th] (2010).ADSCrossRefGoogle Scholar
  23. 23.
    I. Y. Aref’eva, A. A. Bagrov, and E. A. Guseva, JHEP, 0912, 009 (2009); arXiv:0905.1087v4 [hep-th] (2009).MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    I. Y. Aref’eva, A. A. Bagrov, and L. V. Joukovskaya, JHEP, 1003, 002 (2010); arXiv:0909.1294v2 [hep-th] (2009).ADSCrossRefGoogle Scholar
  25. 25.
    I. Y. Aref’eva, A. A. Bagrov, and E. O. Pozdeeva, JHEP, 1205, 117 (2012); arXiv:1201.6542v2 [hep-th] (2012).ADSCrossRefGoogle Scholar
  26. 26.
    E. Kiritsis and A. Taliotis, “Multiplicities from black-hole formation in heavy-ion collisions,” arXiv:1111.1931v2 [hep-ph] (2011).Google Scholar
  27. 27.
    P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett., 102, 211601 (2009); arXiv:0812.2053v2 [hep-th] (2008).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    S. Bhattacharyya and S. Minwalla, JHEP, 0909, 034 (2009); arXiv:0904.0464v2 [hep-th] (2009).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski, Nucl. Phys. B, 563, 279–292 (1999); arXiv:hep-th/9905227v2 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    V. E. Hubeny, M. Rangamani, and T. Takayanagi, JHEP, 0707, 062 (2007); arXiv:0705.0016v3 [hep-th] (2007).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    J. Abajo-Arrastia, J. Aparicio, and E. López,, JHEP, 1011, 149 (2010); arXiv:1006.4090v1 [hep-th] (2010).ADSCrossRefGoogle Scholar
  32. 32.
    V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, Phys. Rev. Lett., 106, 191601 (2011) arXiv:1012.4753v3 [hep-th] (2010).ADSCrossRefGoogle Scholar
  33. 33.
    V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, Phys. Rev. D, 84, 026010 (2011) arXiv:1103.2683v1 [hep-th] (2011).ADSCrossRefGoogle Scholar
  34. 34.
    R. Callan, J.-Y. He, and M. Headrick, JHEP, 1206, 081 (2012); arXiv:1204.2309v1 [hep-th] (2012).ADSCrossRefGoogle Scholar
  35. 35.
    I. Ya. Aref’eva and I. V. Volovich, Phys. Lett. B, 433, 49–55 (1998); arXiv:hep-th/9804182v2 (1998).MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    I. V. Volovich, V. A. Zagrebnov, and V. P. Frolov, Theor. Math. Phys., 29, 1012–1021 (1976).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations