Theoretical and Mathematical Physics

, Volume 174, Issue 1, pp 52–67 | Cite as

The master T-operator for vertex models with trigonometric R-matrices as a classical τ-function

  • A. V. ZabrodinEmail author


We apply the recently proposed construction of the master T-operator to integrable vertex models and the associated quantum spin chains with trigonometric R-matrices. The master T-operator is a generating function for commuting transfer matrices of integrable vertex models depending on infinitely many parameters. It also turns out to be the τ-function of an integrable hierarchy of classical soliton equations in the sense that it satisfies the same bilinear Hirota equations. We characterize the class of solutions of the Hirota equations that correspond to eigenvalues of the master T-operator and discuss its relation to the classical Ruijsenaars-Schneider system of particles.


integrable vertex model R-matrix transfer matrix τ-function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi, and A. Zabrodin, “Classical tau-function for quantum spin chains,” arXiv:1112.3310v2 [math-ph] (2011).Google Scholar
  2. 2.
    I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, Commun. Math. Phys., 188, 267–304 (1997); arXiv:hepth/ 9604080v1 (1996).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    A. Zabrodin, Internat. J. Mod. Phys. B, 11, 3125–3158 (1997); arXiv:hep-th/9610039v1 (1996); A. V. Zabrodin, Theor. Math. Phys., 116, 782–819 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    V. Kazakov, A. S. Sorin, and A. Zabrodin, Nucl. Phys. B, 790, 345–413 (2008); arXiv:hep-th/0703147v2 (2007); A. V. Zabrodin, Theor. Math. Phys., 155, 567–584 (2008); arXiv:0705.4006v1 [hep-th] (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    V. Kazakov, S. Leurent, and Z. Tsuboi, Commun. Math. Phys., 311, 787–814 (2012); arXiv:1010.4022v3 [math-ph] (2010).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    S. N. M. Ruijsenaars and H. Schneider, Ann. Phys., 170, 370–405 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    E. Mukhin, V. Tarasov, and A. Varchenko, St. Petersburg Math. J., 22, 463–472 (2011); arXiv:0904.2131v1 [math.QA] (2009); “KZ characteristic variety as the zero set of classical Calogero-Moser Hamiltonians,” arXiv: 1201.3990v3 [math.QA] (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge (1994).zbMATHGoogle Scholar
  9. 9.
    M. Rosso, Commun. Math. Phys., 117, 581–593 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin (1997).zbMATHCrossRefGoogle Scholar
  11. 11.
    D. Arnaudon, N. Crampé, A. Doikou, L. Frappat, and E. Ragoucy, Ann. H. Poincaré, 7, 1217–1268 (2006); arXiv:math-ph/0512037v3 (2005).zbMATHCrossRefGoogle Scholar
  12. 12.
    N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Leningrad Math. J., 1, 193–225 (1990).MathSciNetzbMATHGoogle Scholar
  13. 13.
    S. Khoroshkin and V. Tolstoy, Commun. Math. Phys., 141, 599–617 (1991).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    P. Kulish, N. Reshetikhin, and E. Sklyanin, Lett. Math. Phys., 5, 393–403 (1981).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    I. V. Cherednik, Funct. Anal. Appl., 20, No. 1, 76–78 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    I. V. Cherednik, Funct. Anal. Appl., 21, No. 2, 172–174 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    V. V. Bazhanov and N. Reshetikhin, J. Phys. A, 23, 1477–1492 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1995).zbMATHGoogle Scholar
  19. 19.
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in: Nonlinear Integrable Systems: Classical Theory and Quantum Theory (Proc. of RIMS Symposium, Kyoto, Japan, 13–16 May 1981, M. Jimbo and T. Miwa, eds.), World Scientific, Singapore (1983), pp. 39–119.Google Scholar
  20. 20.
    M. Jimbo and T. Miwa, Publ. Res. Inst. Math. Sci., 19, 943–1001 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    R. Hirota, J. Phys. Soc. Japan, 50, 3785–3791 (1981).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    T. Miwa, Proc. Japan Acad. Ser. A, 58, 9–12 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    T. Takebe and L.-P. Teo, SIGMA, 0602, 072 (2006).MathSciNetGoogle Scholar
  24. 24.
    A. Orlov and T. Shiota, Phys. Lett. A, 343, 384–396 (2005); arXiv:math-ph/0501017v1 (2005); J. Harnad and V. Z. Enolski, Russ. Math. Surveys, 66, 767–807 (2011).MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    I. M. Krichever, Funct. Anal. Appl., 14, No. 4, 282–290 (1980).MathSciNetCrossRefGoogle Scholar
  26. 26.
    I. M. Krichever and A. V. Zabrodin, Russ. Math. Surveys, 50, 1101–1150 (1995).MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    I. M. Krichever, J. Sov. Math., 21, 335–345 (1983); B. A. Dubrovin, T. M. Malanyuk, I. M. Krichever, and V. G. Makhan’kov, Sov. J. Part. Nucl., 19, 252–269 (1988).zbMATHCrossRefGoogle Scholar
  28. 28.
    Y. Ohta, R. Hirota, S. Tsujimoto, and T. Imai, J. Phys. Soc. Japan, 62, 1872–1886 (1993).MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    I. M. Krichever, Russ. Math. Surveys, 32, 185–213 (1977).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Biochemical PhysicsMoscowRussia
  2. 2.Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.Higher School of EconomicsMoscowRussia

Personalised recommendations