Advertisement

Theoretical and Mathematical Physics

, Volume 172, Issue 3, pp 1187–1205 | Cite as

Quantum tops as examples of commuting differential operators

  • V. E. Adler
  • V. G. Marikhin
  • A. B. Shabat
Article

Abstract

We study the quantum analogues of tops on the Lie algebras so(4) and e(3) represented by differential operators.

Keywords

quantization integrable top operator algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Schur, Sitzungsber. Berl. Math. Ges., 4, 2–8 (1905).Google Scholar
  2. 2.
    J. L. Burchnall and T. W. Chaundy, Proc. Roy. Soc. London A, 118, 557–583 (1928).ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    S. P. Novikov, Funct. Anal. Appl., 8, No. 3, 236–246 (1974).zbMATHCrossRefGoogle Scholar
  4. 4.
    I. M. Krichever, Funct. Anal. Appl., 12, No. 3, 175–185 (1978).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, No. 4, 1–63 (1987).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    R. A. Gabiev and A. B. Shabat, Theor. Math. Phys., 171, 435–441 (2012).CrossRefGoogle Scholar
  7. 7.
    A. P. Veselov, Sov. Math. Dokl., 27, 740–742 (1983).zbMATHGoogle Scholar
  8. 8.
    A. G. Reyman and M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 105, 461–472 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    V. V. Sokolov, Dokl. Math., 69, 108–111 (2004).zbMATHGoogle Scholar
  10. 10.
    V. G. Marikhin and V. V. Sokolov, Regul. Chaotic Dyn., 10, 59–70 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    F. Schottky, Berl. Ber., 227–232 (1891).Google Scholar
  12. 12.
    S. V. Manakov, Funct. Anal. Appl., 10, No. 4, 328–329 (1976).MathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Stekloff, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3), 1, 145–256 (1909).MathSciNetGoogle Scholar
  14. 14.
    M. Adler and P. van Moerbeke, Adv. Math. Suppl. Stud., 9, 81–96 (1986).Google Scholar
  15. 15.
    V. V. Sokolov, “Generalized Kowalewski top: New integrable cases on e(3) and so(4),” in: The Kowalevski Property (CRM Proc. Lect. Notes, Vol. 32, V. B. Kuznetsov, ed.), Amer. Math. Soc., Providence, R. I. (2002), pp. 307–313; arXiv:nlin/0110022v1 (2001).Google Scholar
  16. 16.
    I. V. Komarov and V. B. Kuznetsov, J. Phys. A, 24, L737–L742 (1991).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A. Clebsch, Math. Ann., 3, 238–262 (1870).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    S. V. Kowalevski, Acta Math., 12, 177–232 (1889).MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    O. Laporte, Phys. Rev., 43, 548–551 (1933).ADSCrossRefGoogle Scholar
  20. 20.
    I. V. Komarov, Theor. Math. Phys., 47, 320–324 (1981).MathSciNetCrossRefGoogle Scholar
  21. 21.
    I. V. Komarov, Theor. Math. Phys., 50, 265–270 (1982).MathSciNetCrossRefGoogle Scholar
  22. 22.
    I. V. Komarov, Theor. Math. Phys., 73, 1255–1263 (1987).MathSciNetCrossRefGoogle Scholar
  23. 23.
    I. V. Komarov, J. Phys. A, 34, 2111–2120 (2001).MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    A. Ramani, B. Grammaticos, and B. Dorizzi, Phys. Lett. A, 101, 69–71 (1984).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    A. V. Borisov and I. S. Mamaev, Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos [in Russian], IKI, Moscow (2005).zbMATHGoogle Scholar
  26. 26.
    J. Hietarinta, Phys. Lett. A, 246, 97–104 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    M. A. Olshanetsky and A. M. Perelomov, Phys. Rept., 94, 313–404 (1983).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    L. D. Landau and L. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-relativistic Theory, Nauka, Moscow (1989); English transl. prev. ed., Pergamon, Oxford (1981).Google Scholar
  29. 29.
    V. G. Marikhin and V. V. Sokolov, Regul. Chaotic Dyn., 15, 652–658 (2010).MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    H. A. Kramers and G. P. Ittmann, Z. Physik, 53, 553–565 (1929); 58, 217–231 (1929).ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    M-P. Grosset and A. P. Veselov, Proc. Edinb. Math. Soc. Ser. 2, 51, 635–650 (2008).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASMoscowRussia
  2. 2.Aliev Karachaevo-Cherkessky State UniversityKarachaevskRussia

Personalised recommendations