Advertisement

Theoretical and Mathematical Physics

, Volume 172, Issue 2, pp 1037–1051 | Cite as

Extended resolvent of the heat operator with a multisoliton potential

  • M. Boiti
  • F. Pempinelli
  • A. K. PogrebkovEmail author
Article

Abstract

We consider the heat operator with a general multisoliton potential and derive its extended resolvent depending on a parameter q ∈ ℝ2. We show that it is bounded in all variables and find its singularities in q. We introduce the Green’s functions and study their properties in detail.

Keywords

Kadomtsev-Petviashvili equation heat operator extended resolvent soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl., 15, 539–541 (1970).ADSzbMATHGoogle Scholar
  2. 2.
    V. S. Dryuma, Sov. JETP Lett., 19, 387–388 (1974).ADSGoogle Scholar
  3. 3.
    V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 8, No. 3, 226–235 (1974).zbMATHCrossRefGoogle Scholar
  4. 4.
    M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, Stud. Appl. Math., 69, 135–143 (1983).MathSciNetzbMATHGoogle Scholar
  5. 5.
    V. D. Lipovskii, Funct. Anal. Appl., 20, No. 4, 282–291 (1986).MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. V. Wickerhauser, Commun. Math. Phys., 108, 67–89 (1987).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    G. Grinevich and P. S. Novikov, Funct. Anal. Appl., 22, No. 1, 19–27 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, Inverse Problems, 17, 937–957 (2001).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    M. Boiti, F. Pempinelli, and A. K. Pogrebkov, Theor. Math. Phys., 168, 865–874 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Chakravarty and Y. Kodama, Stud. Appl. Math., 123, 83–151 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Y. Kodama, J. Phys. A, 43, 434004 (2010); arXiv:1004.4607v1 [nlin.SI] (2010).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. Boiti, F. Pempinelli, and A. K. Pogrebkov, J. Math. Phys., 47, 123510 (2006).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, J. Math. Phys., 43, 1044–1062 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    M. Boiti, F. Pempinelli, and A. K. Pogrebkov, “Green’s function of heat operator with pure soliton potential,” arXiv:1201.0152v1 [nlin.SI] (2012).Google Scholar
  15. 15.
    M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, Theor. Math. Phys., 159, 721–733 (2009); arXiv:0901.3857v1 [nlin.SI] (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    M. Boiti, F. Pempinelli, and A. Pogrebkov, J. Math Phys., 52, 083506 (2011); arXiv:1105.3681v1 [nlin.SI] (2011).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, Theor. Math. Phys., 165, 1237–1255 (2010); arXiv:0911.1675v1 [nlin.SI] (2009).CrossRefGoogle Scholar
  18. 18.
    M. Gekhtman and M. Shapiro, Private communication (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità del Salento and Sezione INFNLecceItaly
  2. 2.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations