Advertisement

Theoretical and Mathematical Physics

, Volume 172, Issue 1, pp 911–931 | Cite as

Classical double, R-operators, and negative flows of integrable hierarchies

  • B. A. DubrovinEmail author
  • T. V. Skrypnyk
Article

Abstract

Using the classical double G of a Lie algebra gequipped with the classical R-operator, we define two sets of functions commuting with respect to the initial Lie-Poisson bracket on g* and its extensions. We consider examples of Lie algebras g with the “Adler-Kostant-Symes” R-operators and the two corresponding sets of mutually commuting functions in detail. Using the constructed commutative Hamiltonian flows on different extensions of g, we obtain zero-curvature equations with g-valued U-V pairs. The so-called negative flows of soliton hierarchies are among such equations. We illustrate the proposed approach with examples of two-dimensional Abelian and non-Abelian Toda field equations.

Keywords

classical R-operator integrable hierarchy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons [in Russian], Nauka, Moscow (1990); English transl. prev. ed., Springer, Berlin (1987).Google Scholar
  2. 2.
    H. Flaschka, A. Newell, and T. Ratiu, Phys. D, 9, 300–323, 324–332 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    A. C. Newell, Solitons in Mathematics and Physics (CBMS-NSF Regl. Conf. Series Applied Math., Vol. 48), SIAM, Philadelphia, Penn. (1985).CrossRefGoogle Scholar
  4. 4.
    H. Aratyn, J. F. Gomes, and A. H. Zimerman, J. Phys. A, 39, 109 (2006).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Z. Qiao and W. Strampp, Phys. A, 313, 365–380 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    C.-L. Terng and K. Uhlenbeck, “Poisson actions and scattering theory for integrable systems,” in: Surveys in Differential Geometry (C.-L. Terng and K. Uhlenbeck, eds.), Vol. 4, Integral Systems, International Press, Boston, Mass. (1998), pp. 315–402; arXiv:dg-ga/9707004v1 (1997).Google Scholar
  7. 7.
    T. V. Skrypnik, Theor. Math. Phys., 142, 275–288 (2005).MathSciNetGoogle Scholar
  8. 8.
    T. V. Skrypnik, Theor. Math. Phys., 155, 633–645 (2008).MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. V. Skrypnyk, SIGMA, 0804, 011 (2008).MathSciNetGoogle Scholar
  10. 10.
    M. A. Semenov-Tian-Shansky, Funct. Anal. Appl., 17, No. 4, 259–272 (1983).CrossRefGoogle Scholar
  11. 11.
    K. Ueno and K. Takasaki, Proc. Japan Acad. Ser. A, 59, No. 5, 167–170 (1983); No. 6, 215–218 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    A. G. Reiman and M. A. Semenov-Tian-Shansky, Integrable Systems: Group Theory Approach [in Russian], RKhD, Moscow (2003).Google Scholar
  13. 13.
    A. V. Mikhailov, JETP Lett., 30, 414–418 (1979).ADSGoogle Scholar
  14. 14.
    A. V. Mikhailov, M. Olshanetsky, and A. Perelomov, Commun. Math. Phys., 79, 473–488 (1981).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Kh. Nirov and A. Razumov, Nucl. Phys. B, 782, 241–275 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    G. Carlet, Lett. Math. Phys., 71, 209–226 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    A. G. Reiman and M. A. Semenov-Tian-Shansky, Group theory methods in the theory of integrable systems [in Russian],” in: Dynamical Systems VII (Sovrem. Probl. Mat. Fund. Naprav., Vol. 16, R. V. Gamkrelidze, ed.), VINITI, Moscow (1989), pp. 119–193.Google Scholar
  18. 18.
    V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge (1990).zbMATHCrossRefGoogle Scholar
  19. 19.
    P. P. Kulish, Lett. Math. Phys., 5, 191–197 (1981).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    W. Oevel and O. Ragnisco, Phys. A, 161, 181–220 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    L.-C. Li and S. Parmentier, Commun. Math. Phys., 125, 545–563 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    F. Guil and M. Mañas, Lett. Math. Phys., 19, 89–95 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.International School for Advanced StudiesTriesteItaly
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Universita di Milano BicoccaMilanItaly
  4. 4.Bogolyubov Institute for Theoretical PhysicsKievUkraine

Personalised recommendations