Advertisement

Theoretical and Mathematical Physics

, Volume 170, Issue 1, pp 17–25 | Cite as

Abnormal enhancement of dilepton yield in central heavy-ion collisions from local parity breaking

  • A. A. AndrianovEmail author
  • V. A. Andrianov
  • D. Espriu
  • X. Planells
Article

Abstract

We propose a new explanation for the dilepton excess observed in dense (hot) nuclear matter at invariant masses below 1GeV. We argue that the presence of local parity breaking due to a time-dependent isosinglet and/or isotriplet pseudoscalar condensate may substantially modify the dispersion relation of photons and vector mesons propagating in such a medium, resulting in an abnormally large excess of e+e pairs with respect to the common theoretical predictions based on a “cocktail” of hadronic processes. We propose various signatures to prove or disprove this effect.

Keywords

superdense baryonic matter at high temperatures spontaneous parity breaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogoliubov, B. V. Struminsky, and A. N. Tavkhelidze, “On composite models in the theory of elementary particles [in Russian],” Preprint D-1968, Joint Inst. Nucl. Res., Dubna (1965).Google Scholar
  2. 2.
    P. Wurn et al. (CERES Collab.), Nucl. Phys. A, 590, 103–116 (1995); G. Agakichiev et al. (CERES/NA45 Collab.), Eur. Phys. J. C, 4, 231–247 (1998); R. Arnaldi et al. (NA60 Collab.), Phys. Rev. Lett., 96, 162302 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    R. Arnaldi et al. (NA60 Collab.), Phys. Rev. Lett., 96, 162302 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    A. Adare et al. (PHENIX Collab.), Phys. Rev. C, 81, 034911 (2010); arXiv:0912.0244v1 [nucl-ex] (2009).ADSCrossRefGoogle Scholar
  5. 5.
    G. Agakichiev et al. (HADES Collab.), Phys. Rev. Lett., 98, 052302 (2007); arXiv:nucl-ex/0608031v3 (2006); Phys. Lett. B, 663, 43–48 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    K. O. Lapidus and V. M. Emel’yanov, Phys. Part. Nucl., 40, 29–48 (2009).CrossRefGoogle Scholar
  7. 7.
    I. Tserruya, “Electromagnetic probes,” arXiv:0903.0415v3 [nucl-ex] (2009).Google Scholar
  8. 8.
    G. E. Brown and M. Rho, Phys. Rev. Lett., 66, 2720–2723 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    R. Rapp and J. Wambach, Chiral Symmetry Restoration and Dileptons in Relativistic Heavy-Ion Collisions (Advances Nucl. Phys., Vol. 25), Kluwer, New York (2000); W. Liu and R. Rapp, Nucl. Phys. A, 796, 101–121 (2007); arXiv:nucl-th/0604031v3 (2006); H. van Hees and R. Rapp, Nucl. Phys. A, 806, 339–387 (2008).Google Scholar
  10. 10.
    W. Cassing and E. Bratkovskaya, Nucl. Phys. A, 807, 214–250 (2008); arXiv:0712.0635v2 [nucl-th] (2007); E. L. Bratkovskaya, W. Cassing, and O. Linnyk, Phys. Lett. B, 670, 428–433 (2009); arXiv:0805.3177v2 [nucl-th] (2008).ADSCrossRefGoogle Scholar
  11. 11.
    K. Dusling and I. Zahed, Nucl. Phys. A, 825, 212–221 (2009); arXiv:0712.1982v2 [nucl-th] (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Andrianov, V. Andrianov, D. Espriu, and X. Planells, “Abnormal dilepton yield from local parity breaking in heavy-ion collisions,” arXiv:1010.4688v1 [hep-ph] (2010).Google Scholar
  13. 13.
    A. B. Migdal, Sov. Phys. JETP, 34, 1184 (1972); 36, 1052–1055 (1973); R. F. Sawyer, Phys. Rev. Lett., 29, 382–385 (1972); D. J. Scalapino, Phys. Rev. Lett., 29, 386–388 (1972); G. Baym, Phys. Rev. Lett., 30, 1340–1342 (1973); A. B. Migdal, O. A. Markin, and I. I. Mishustin, Sov. Phys. JETP, 39, 212–221 (1974).MathSciNetADSGoogle Scholar
  14. 14.
    A. A. Andrianov and D. Espriu, Phys. Lett. B, 663, 450–455 (2008); arXiv:0709.0049v4 [hep-ph] (2007); A. A. Andrianov, V. A. Andrianov, and D. Espriu, Phys. Lett. B, 678, 416–421 (2009); arXiv:0904.0413v1 [hep-ph] (2009).ADSCrossRefGoogle Scholar
  15. 15.
    D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Phys.Rev. Lett., 81, 512–515 (1998); arXiv:hep-ph/9804221v2 (1998); K. Buckley, T. Fugleberg, and A. Zhitnitsky, Phys. Rev. Lett., 84, 4814–4817 (2000); arXiv:hep-ph/9910229v2 (1999); D. Kharzeev, Phys. Lett. B, 633, 260–264 (2006); arXiv:hep-ph/0406125v2 (2004); D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A, 803, 227–253 (2008); arXiv:0711.0950v1 [hep-ph] (2007).ADSCrossRefGoogle Scholar
  16. 16.
    P. Buividovich, M. Chernodub, E. Luschevskaya, and M. Polikarpov, Phys. Rev. D, 80, 054503 (2009); arXiv:0907.0494v2 [hep-lat] (2009).ADSCrossRefGoogle Scholar
  17. 17.
    B. I. Abelev et al. (STAR Collab.), Phys. Rev. Lett., 103, 251601 (2009); arXiv:0909.1739v3 [nucl-ex] (2009); S. A. Voloshin, J. Phys. Conf. Ser., 230, 012021 (2010); arXiv:1003.1127v1 [nucl-ex] (1003).ADSCrossRefGoogle Scholar
  18. 18.
    A. Gorsky and M. B. Voloshin, “Remarks on decay of defects with internal degrees of freedom,” arXiv: 1006.5423v1 [hep-th] (2010).Google Scholar
  19. 19.
    A. A. Andrianov, D. Espriu, P. Giacconi, and R. Soldati, JHEP, 0909, 057 (2009); arXiv:0907.3709v2 [hepph] (2009); A. A. Andrianov, D. Espriu, F. Mescia, and A. Renau, Phys. Lett. B, 684, 101–105 (2010); arXiv:0912.3151v1 [hep-ph] (2009).ADSCrossRefGoogle Scholar
  20. 20.
    J. J. Sakurai, Ann. Phys., 11, 1–48 (1960); Currents and Mesons, Univ. Chicago Press, Chicago (1969).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    N. Kaiser and U.-G. Meissner, Nucl. Phys. A, 519, 671–696 (1990); E. Truhlik, J. Smejkal, and F. C. Khanna, Nucl. Phys. A, 689, 741–752 (2001); arXiv:nucl-th/0010080v1 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    O. Dumbrajs, R. Koch, H. Pilkuhn, G. C. Oades, H. Behrens, J. J. de Swart, and P. Kroll, Nucl. Phys. B, 216, 277–335 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    F. Klingl, N. Kaiser, and W. Weise, Z. Phys. A, 356, 193–206 (1996); arXiv:hep-ph/9607431v1 (1996).ADSGoogle Scholar
  24. 24.
    K. Nakamura et al. (Particle Data Group), J. Phys. G, 37, 075021 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    T. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D, 58, 114006 (1998); arXiv:hep-ph/9802409v2 (1998); Y. N. Klopot, A. G. Oganesian, and O. V. Teryaev, “Dispersive approach to Abelian axial anomaly, mixing of pseudoscalar mesons and symmetries,” arXiv:0911.0180v1 [hep-ph] (2009).ADSCrossRefGoogle Scholar
  26. 26.
    J. Alfaro, A. A. Andrianov, M. Cambiaso, P. Giacconi, and R. Soldati, Internat. J. Mod. Phys. A, 25, 3271–3306 (2010); arXiv:0904.3557v3 [hep-th] (2009).ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    R. Arnaldi et al. (NA60 Collab.), Phys. Lett. B, 677, 260–266 (2009); arXiv:0902.2547v1 [hep-ph] (2009).ADSCrossRefGoogle Scholar
  28. 28.
    R. Arnaldi et al. (NA60 Collab.), Eur. Phys. J. C, 61, 711–720 (2009); arXiv:0812.3053v1 [nucl-ex] (2008).ADSCrossRefGoogle Scholar
  29. 29.
    V. L. Rykov, “Personal communication,” (2010).Google Scholar
  30. 30.
    E. L. Feinberg, Il Nuovo Cimento B, 34, 391–410 (1976); L. McLerran and T. Toimela, Phys. Rev. D, 31, 545–563 (1985).CrossRefGoogle Scholar
  31. 31.
    L. G. Landsberg, Phys. Rep., 128, 301–376 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Andrianov
    • 1
    • 2
    Email author
  • V. A. Andrianov
    • 1
  • D. Espriu
    • 2
    • 3
  • X. Planells
    • 2
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.Universitat de Barcelona Martíi Franquès 1BarcelonaSpain
  3. 3.CERNGenevaSwitzerland

Personalised recommendations