Theoretical and Mathematical Physics

, Volume 169, Issue 2, pp 1589–1599 | Cite as

Quantum logics, games, and equilibriums

Article
  • 69 Downloads

Abstract

We establish a natural relation between antagonistic matrix games and ortholattices (quantum logics).We show that an equilibrium in the corresponding quantum game determines the operator representation of a quantum logic. We formulate a condition for quantum equilibrium.

Keywords

quantum logic lattice quantum game Nash equilibrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Grib and G. N. Parfionov, J. Math. Sci., 125, 173–184 (2005).CrossRefMathSciNetGoogle Scholar
  2. 2.
    L. K. Franeva, A. A. Grib, and G. N. Parfionov, “Quantum games of macroscopic partners,” in: Proc. 1st Intl. Conf. “Game Theory and Management” (St. Petersburg, Russia, 28–29 June 2007), Grad. Sch. Manag., St. Petersburg Univ., St. Petersburg (2008), pp. 130–152; http://www.gsom.pu.ru/en/research/conferences/.Google Scholar
  3. 3.
    A. A. Grib and G. N. Parfionov, “How to play macroscopic quantum game,” in: Proc. 2nd Intl. Conf. “Game Theory and Management” (St. Petersburg, Russia, 26–27 June 2008), Grad. Sch. Manag., St. Petersburg Univ., St. Petersburg (2009), pp. 137–146; http://www.gsom.pu.ru/en/research/conferences/.Google Scholar
  4. 4.
    A. A. Grib and G. N. Parfionov, “Quantum Nash-equilibrium and linear representations of ortholattices,” in: Proc. 3rd Intl. Conf. “Game Theory and Management” (St. Petersburg, Russia, 24–26 June 2009), Grad. Sch. Manag., St. Petersburg Univ., St. Petersburg (2010), pp. 132–143; http://www.gsom.pu.ru/en/research/conferences/.Google Scholar
  5. 5.
    D. A. Meyer, Phys. Rev. Lett., 82, 1052–1055 (1999); arXiv:quant-ph/9804010v1 (1998).CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett., 83, 3077–3080 (1999); arXiv:quant-ph/9806088v3 (1998).CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    L. Marinatto and T. Weber, Phys. Lett. A, 272, 291–303 (2000); arXiv:quant-ph/0004081v2 (2000).CrossRefMATHADSMathSciNetGoogle Scholar
  8. 8.
    G. Parfionov, “Multiple Nash-equilibrium in quantum game,” arXiv:0806.1102v1 [quant-ph] (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Hertsen Russian State Pedagogical UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State University of Economics and FinanceSt. PetersburgRussia

Personalised recommendations