Theoretical and Mathematical Physics

, Volume 169, Issue 2, pp 1551–1560

Recursive properties of branching and BGG resolution

Article

DOI: 10.1007/s11232-011-0132-9

Cite this article as:
Lyakhovsky, V.D. & Nazarov, A.A. Theor Math Phys (2011) 169: 1551. doi:10.1007/s11232-011-0132-9

Abstract

Recurrence relations for branching coefficients are based on a certain decomposition of the singular element. We show that this decomposition can be used to construct parabolic Verma modules and to obtain the generalized Weyl-Verma formulas for characters. We also demonstrate that the branching coefficients determine the generalized Bernstein-Gelfand-Gelfand resolution.

Keywords

Lie algebra representation branching rule Bernstein-Gelfand-Gelfand resolution 

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations