Theoretical and Mathematical Physics

, Volume 169, Issue 2, pp 1551–1560 | Cite as

Recursive properties of branching and BGG resolution

Article

Abstract

Recurrence relations for branching coefficients are based on a certain decomposition of the singular element. We show that this decomposition can be used to construct parabolic Verma modules and to obtain the generalized Weyl-Verma formulas for characters. We also demonstrate that the branching coefficients determine the generalized Bernstein-Gelfand-Gelfand resolution.

Keywords

Lie algebra representation branching rule Bernstein-Gelfand-Gelfand resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Springer, New York (1997).CrossRefMATHGoogle Scholar
  2. 2.
    R. Coquereaux and G. Schieber, J. Phys. (Conf. Series), 103, 012006 (2008); arXiv:0710.1397v3 [math-ph] (2007).CrossRefADSGoogle Scholar
  3. 3.
    J. Lepowsky, J. Algebra, 49, 496–511 (1977).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    J. H. Bernstein, I. M. Gel’fand, and S. I. Gel’fand, Funct. Anal. Appl., 10, 87–92 (1976).CrossRefMathSciNetGoogle Scholar
  5. 5.
    S. É. Derkachov and A. N. Manashov, Lett. Math. Phys., 97, 185–202 (2011); arXiv:1008.4734v2 [nlin.SI] (2010).CrossRefADSMathSciNetMATHGoogle Scholar
  6. 6.
    S. É. Derkachov and A. N. Manashov, J. Phys. A, 42, 075204 (2009); arXiv:0809.2050v2 (2008).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    V. D. Lyakhovsky and A. A. Nazarov, J. Phys. A, 44, 075205 (2011); arXiv:1007.0318v2 [math.RT] (2010).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. Ilyin, P. Kulish, and V. Lyakhovsky, St. Petersburg Math. J., 21, 203–216 (2010); arXiv:0812.2124v1 [math.RT] (2008).CrossRefMATHGoogle Scholar
  9. 9.
    J. E. Humphreys, Introduction to Lie Algebras and Representation Theory (Grad. Texts Math., Vol. 9), Springer, New York (1997).Google Scholar
  10. 10.
    I. Bernstein, I. M. Gelfand, and S. I. Gelfand, “Differential operators on principal affine space and study of g-modules,” in: Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., I. M. Gelfand, ed.), Halsted Press, New York (1975), pp. 21–64.Google Scholar
  11. 11.
    J. H. Bernstein, I. M. Gel’fand, and S. I. Gel’fand, Funct. Anal. Appl., 5, No. 1, 1–8 (1971).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Amer. Math. Soc., Providence, R. I. (2008).MATHGoogle Scholar
  13. 13.
    G. J. Heckman, Invent. Math., 67, 333–356 (1982).CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    H. D. Doebner and O. Melsheimer, Nouvo Cimento A, 49, 306–311 (1967).CrossRefMATHADSMathSciNetGoogle Scholar
  15. 15.
    A. Nijenhuis and R. W. Richardson Jr., Bull. Amer. Math. Soc., 72, 1–29 (1966).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations