Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The important role of functional integrals in modern physics

Abstract

The 20th century has witnessed the emergence of the physics of fluctuating systems both statistical and quantum. This to some extent explains the important role played by functional integrals in modern physics. We describe a few striking examples of physics problems where using path and, more generally, field integrals has proved decisive.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. L. M. de Maupertuis, “Les Loix du mouvement et du repos déduites d’un principe métaphysique,” in: Histoire de l’Académie Royale des Sciences et Belles-Lettres, Institut de France, Paris (1746), p. 267–294.

  2. 2.

    L. Euler, “Additamentum II,” in: Methodus Inveniendi Lineas Curvas Maximi Minime Proprietate Gaudentes, Sive Solutis Problematis Isoperimetrici Latissimo Sensu Accepti (Original Latin text), Bousquet, Lausanne (1774).

  3. 3.

    J.-L. Lagrange, Mécanique analytique, Chez la Veuve Desaint, Paris (1788); “Mémoire sur la théorie du mouvement des fluides,” in: Oeuvres de Lagrange (J. A. Serret, ed.), Vol. 4, Gauthier-Villars, Paris (1867), pp. 695-748.

  4. 4.

    W. R. Hamilton, Phil. Trans. Roy. Soc. London, 124, 247–308 (1834); 125, 95–144 (1835).

  5. 5.

    D. Hilbert, Gött. Nachr., 27, 395–407 (1915).

  6. 6.

    R. P. Feynman, Rev. Modern Phys., 20, 367–387 (1948).

  7. 7.

    J. Zinn-Justin, Scholarpedia, 4, 8674 (2009).

  8. 8.

    J. Zinn-Justin, Path Integrals in Quantum Mechanics (Oxford Grad. Texts, Vol. 13), Oxford Univ. Press, Oxford (2005).

  9. 9.

    P. A. M. Dirac, Physik. Z. Sowjetunion, 3, 64–72 (1933); J. Schwinger, Selected Papers on Quantum Electrodynamics, Dover, New York (1958).

  10. 10.

    A. N. Vassiliev, “Etudes des symétries brisées par des méthodes functionnelles (Notes taken by P. Moussa),” in: Cargèse Lectures in Physics (D. Bessis, ed.), Vol. 5, Gordon and Breach, New York (1971), pp. 239–303.

  11. 11.

    A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistics [in Russian], Leningrad State Univ. Press, Leningrad (1976); English transl.: Functional Methods in Quantum Field Theory and Statistical Physics, Gordon and Breach, Amsterdam (1998).

  12. 12.

    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford (1989).

  13. 13.

    R. P. Feynman, Acta Phys. Polon., 24, 697–722 (1963).

  14. 14.

    L. D. Faddeev and V. N. Popov, Phys. Lett. B, 25, 29–30 (1967); L. D. Faddeev, Scholarpedia, 4, 7389 (2009).

  15. 15.

    C. Becchi, A. Rouet, and R. Stora, Commun. Math. Phys., 42, 127–162 (1975); Ann. Phys., 98, 287–321 (1976); I. V. Tyutin, “Gauge invariance in field theory and statistical physics in the operator formulation,” Preprint No. 39, Lebedev Phys. Inst., Moscow (1975); C. M. Becchi and C. Imbimbo, Scholarpedia, 3, 7135 (2008).

  16. 16.

    G. ’t Hooft, Nucl. Phys. B, 33, 173–199 (1971).

  17. 17.

    B. W. Lee and J. Zinn-Justin, Phys. Rev. D, 5, 3121–3137, 3137–3155, 3155–3160 (1972); Erratum, 8, 4654–4654 (1973); 7, 1049–1056 (1973).

  18. 18.

    A. A. Slavnov, Theor. Math. Phys., 10, 99–104 (1972); J. C. Taylor, Nucl. Phys. B, 33, 436–444 (1971); A. A. Slavnov, Scholarpedia, 3, 7119 (2008).

  19. 19.

    J. Zinn-Justin, “Renormalization of gauge theories,” in: Trends in Elementary Particle Theory (H. Rollnik and K. Dietz, eds.) (Lect. Notes Phys., Vol. 37), Springer, Berlin (1975), p. 1–39; Modern Phys. Lett. A, 14, 1227–1235 (1999); arXiv:hep-th/9906115v1 (1999); Scholarpedia, 4, 7120 (2009).

  20. 20.

    M. Gell-Mann and M. Lévy, Nuovo Cimento, 16, 705–726 (1960).

  21. 21.

    J. Honerkamp and K. Meetz, Phys. Rev. D, 3, 1996–1998 (1971).

  22. 22.

    K. G. Wilson, Phys. Rev. D, 10, 2445–2459 (1974).

  23. 23.

    L. N. Lipatov, JETP Lett., 25, 104–106 (1977).

  24. 24.

    J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B, 21, 3976–3998 (1980); R. Guida and J. Zinn-Justin, J. Phys. A, 31, 8103–8121 (1998); arXiv:cond-mat/9803240v3 (1998).

  25. 25.

    J. Zinn-Justin, Nucl. Phys. B, 192, 125–140 (1981); 218, 333–348 (1983).

  26. 26.

    U. D. Jentschura and J. Zinn-Justin, J. Phys. A, 34, L253–L258 (2001); J. Zinn-Justin and U. D. Jentschura, Ann. Phys., 313, 197–267 (2004); arXiv:quant-ph/0501136v2 (2005); 313, 269–325 (2004).

  27. 27.

    M. Moshe and J. Zinn-Justin, Phys. Rep., 385, 69–228 (2003); arXiv:hep-th/0306133v1 (2003).

Download references

Author information

Correspondence to J. Zinn-Justin.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 169, No. 1, pp. 20–31, October, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zinn-Justin, J. The important role of functional integrals in modern physics. Theor Math Phys 169, 1380–1389 (2011). https://doi.org/10.1007/s11232-011-0114-y

Download citation

Keywords

  • fluctuating system
  • statistical mechanics
  • quantum mechanics
  • functional integral