Classical and nonclassical symmetries for the Krichever-Novikov equation

Article

Abstract

We study the Krichever-Novikov equation from the standpoint of the theory of symmetry reductions in partial differential equations. We obtain a Lie group classification. Moreover, we obtain some exact solutions, and we apply the nonclassical method.

Keywords

partial differential equation symmetry exact solution 

References

  1. 1.
    S. I. Svinolupov and V. V. Sokolov, Funct. Anal. Appl., 16, 317–319 (1982).MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Hernández Heredero, V. V. Sokolov, and S. I. Svinolupov, Phys. D, 87, 32–36 (1995).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    V. V. Sokolov, Russ. Math. Surveys, 43, No. 5, 165–204 (1988).ADSMATHCrossRefGoogle Scholar
  4. 4.
    V. E. Adler, Internat. Math. Res. Notices, 1, 1–4 (1998); arXiv:solv-int/9707015v1 (1997).CrossRefGoogle Scholar
  5. 5.
    I. M. Krichever and S. P. Novikov, Russ. Math. Surveys, 35, No. 6, 53–79 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    S. Igonin and R. Martini, J. Phys. A, 35, 9801–9810 (2002); arXiv:nlin/0208006v2 (2002).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    N. Euler and M. Euler, J. Nonlin. Math. Phys., 16(Suppl. 1), 93–106 (2009).CrossRefGoogle Scholar
  8. 8.
    S. I. Svinolupov, V. V. Sokolov, and R. I. Yamilov, Sov. Math. Dokl., 28, 165–168 (1983); arXiv:nlin/0110027v1 (2001).MATHGoogle Scholar
  9. 9.
    F. W. Nijhoff, Phys. Lett. A, 297, 49–58 (2002).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    N. Kh. Ibragimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983); English transl.: Transformation Groups Applied to Mathematical Physics, Reidel, Dordrecht (1985).MATHGoogle Scholar
  11. 11.
    P. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts Math., Vol. 107), Springer, New York (1993).MATHCrossRefGoogle Scholar
  12. 12.
    L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978); English transl., Acad. Press, New York (1982).MATHGoogle Scholar
  13. 13.
    G. W. Bluman and J. D. Cole, J. Math. Mech., 18, 1025–1042 (1969).MathSciNetMATHGoogle Scholar
  14. 14.
    G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, Berlin (1989).MATHGoogle Scholar
  15. 15.
    M. B. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1972).MATHGoogle Scholar
  16. 16.
    P. A. Clarkson, Chaos Solitons Fractals, 5, 2261–2301 (1995).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    P. A. Clarkson and E. L. Mansfield, SIAM J. Appl. Math., 54, 1693–1719 (1994); arXiv:solv-int/9409003v1 (1994).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    N. Bilă and J. Niesen, J. Symbolic Comput., 38, 1523–1533 (2004).MathSciNetCrossRefGoogle Scholar
  19. 19.
    M. S. Bruzón and M. L. Gandarias, Commun. Nonlinear Sci. Numer. Simul., 13, 517–523 (2008).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de CádizCádizSpain

Personalised recommendations