Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Classical and nonclassical symmetries for the Krichever-Novikov equation

  • 133 Accesses

  • 9 Citations

Abstract

We study the Krichever-Novikov equation from the standpoint of the theory of symmetry reductions in partial differential equations. We obtain a Lie group classification. Moreover, we obtain some exact solutions, and we apply the nonclassical method.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. I. Svinolupov and V. V. Sokolov, Funct. Anal. Appl., 16, 317–319 (1982).

  2. 2.

    R. Hernández Heredero, V. V. Sokolov, and S. I. Svinolupov, Phys. D, 87, 32–36 (1995).

  3. 3.

    V. V. Sokolov, Russ. Math. Surveys, 43, No. 5, 165–204 (1988).

  4. 4.

    V. E. Adler, Internat. Math. Res. Notices, 1, 1–4 (1998); arXiv:solv-int/9707015v1 (1997).

  5. 5.

    I. M. Krichever and S. P. Novikov, Russ. Math. Surveys, 35, No. 6, 53–79 (1980).

  6. 6.

    S. Igonin and R. Martini, J. Phys. A, 35, 9801–9810 (2002); arXiv:nlin/0208006v2 (2002).

  7. 7.

    N. Euler and M. Euler, J. Nonlin. Math. Phys., 16(Suppl. 1), 93–106 (2009).

  8. 8.

    S. I. Svinolupov, V. V. Sokolov, and R. I. Yamilov, Sov. Math. Dokl., 28, 165–168 (1983); arXiv:nlin/0110027v1 (2001).

  9. 9.

    F. W. Nijhoff, Phys. Lett. A, 297, 49–58 (2002).

  10. 10.

    N. Kh. Ibragimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983); English transl.: Transformation Groups Applied to Mathematical Physics, Reidel, Dordrecht (1985).

  11. 11.

    P. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts Math., Vol. 107), Springer, New York (1993).

  12. 12.

    L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978); English transl., Acad. Press, New York (1982).

  13. 13.

    G. W. Bluman and J. D. Cole, J. Math. Mech., 18, 1025–1042 (1969).

  14. 14.

    G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, Berlin (1989).

  15. 15.

    M. B. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1972).

  16. 16.

    P. A. Clarkson, Chaos Solitons Fractals, 5, 2261–2301 (1995).

  17. 17.

    P. A. Clarkson and E. L. Mansfield, SIAM J. Appl. Math., 54, 1693–1719 (1994); arXiv:solv-int/9409003v1 (1994).

  18. 18.

    N. Bilă and J. Niesen, J. Symbolic Comput., 38, 1523–1533 (2004).

  19. 19.

    M. S. Bruzón and M. L. Gandarias, Commun. Nonlinear Sci. Numer. Simul., 13, 517–523 (2008).

Download references

Author information

Correspondence to M. S. Bruzón.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 168, No. 1, pp. 24–34, July, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bruzón, M.S., Gandarias, M.L. Classical and nonclassical symmetries for the Krichever-Novikov equation. Theor Math Phys 168, 875 (2011). https://doi.org/10.1007/s11232-011-0071-5

Download citation

Keywords

  • partial differential equation
  • symmetry
  • exact solution