Theoretical and Mathematical Physics

, Volume 167, Issue 2, pp 567–576 | Cite as

Special Lagrangian fibrations on the flag variety F 3

  • N. A. TyurinEmail author


We propose a construction of a Lagrangian torus fibration of the full flag variety in 3 . In contrast to the classical fibration obtained from the Gelfand-Zeitlin system, the proposed fibration is special Lagrangian.


flag variety Lagrangian torus pseudotoric structure special Lagrangian fibration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Audin, Torus Actions on Symplectic Manifolds (Progr. Math., Vol. 93), Birkhäuser, Basel (2004).zbMATHCrossRefGoogle Scholar
  2. 2.
    S. A. Belev and N. A. Tyurin, Math. Notes, 87, 43–51 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    N. A. Tyurin, Theor. Math. Phys., 162, 255–275 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    V. Guillemin and S. Sternberg, J. Funct. Anal., 52, 106–128 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    D. Auroux, J. Gökova Geom. Topol., 1, 51–91 (2007); arXiv:0706.3207v2 [math.SG] (2007).MathSciNetzbMATHGoogle Scholar
  6. 6.
    T. Nishinou, Y. Nohara, and K. Ueda, Adv. Math., 224, 648–706 (2010); arXiv:0810.3470v2 [math.SG] (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    N. A. Tyurin, “Twist tori and pseudotoric structures,” arXiv:1004.2574v1 [math.SG] (2010).Google Scholar

Copyright information

© MAIK/Nauka 2011

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow OblastRussia
  2. 2.Higher School of EconomicsMoscowRussia
  3. 3.Moscow State University of Railway Engineering (MIIT)MoscowRussia

Personalised recommendations