Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Solutions of p-adic string equations

  • 50 Accesses

  • 7 Citations

Abstract

We review several purely mathematical results concerning boundary value problems for nonlinear pseudodifferential equations for p-adic closed and open strings in the tree approximation in the case d = 1. For the solutions of these problems, we present formulas establishing the relations between the numbers of their zeros, the multiplicities of the zeros, and the numbers indicating how many times the solutions change sign.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. H. Frampton and Y. Okada, Phys. Rev. D, 37, 3077–3079 (1988).

  2. 2.

    L. Brekke and P. G. O. Freund, Phys. Rep., 233, 1–66 (1993).

  3. 3.

    I. V. Volovich, Class. Q. Grav., 4, L83–L87 (1987).

  4. 4.

    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian], Nauka, Moscow (1994); English transl. (Ser. Sov. East Eur. Math., Vol. 1), World Scientific, Singapore (1994).

  5. 5.

    L. Brekke, P. G. O. Freund, M. Olson, and E. Witten, Nucl. Phys. B, 302, 365–402 (1988).

  6. 6.

    N. Moeller and B. Zwiebach, JHEP, 0210, 034 (2002); arXiv:hep-th/0207107v2 (2002).

  7. 7.

    N. Moeller and M. Schnabl, JHEP, 0401, 011 (2004); arXiv:hep-th/0304213v2 (2003).

  8. 8.

    V. S. Vladimirov and Ya. I. Volovich, Theor. Math. Phys., 138, 297–309 (2004); arXiv:hep-th/0306018v1 (2003).

  9. 9.

    V. S. Vladimirov, Izv. Math., 69, 487–512 (2005).

  10. 10.

    N. Barnaby and N. Kamran, JHEP, 0802, 008 (2008); arXiv:0809.4513v1 [hep-th] (2008).

  11. 11.

    V. S. Vladimirov, Sci. China Ser. A, 51, 754–764 (2008).

  12. 12.

    V. S. Vladimirov, Proc. Steklov Inst. Math., 265, 242–261 (2009).

  13. 13.

    V. S. Vladimirov, P-Adic Num. Ultrametr. Anal. Appl., 1, 79–87 (2009).

  14. 14.

    D. V. Prokhorenko, “On some nonlinear integral equation in the (super)string theory,” arXiv:math-ph/0611068v1 (2006).

  15. 15.

    I. Ya. Aref’eva, P. B. Medvedev, and A. P. Zubarev, Nucl. Phys. B, 341, 464–488 (1990).

  16. 16.

    I. Ya. Aref’eva, A. S. Koshelev, and L. V. Joukovskaya, JHEP, 0309, 012 (2003); arXiv:hep-th/0301137v3 (2003).

  17. 17.

    G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Vol. 2, Funktionentheorie, Nullstellen, Polynome, Determinanten, Zahlentheorie, Springer, Berlin (1925).

  18. 18.

    G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge (1934).

  19. 19.

    A. G. Kurosh, Course of Higher Algebra [in Russian], GITTL, Moscow (1953); English transl.: Higher Algebra, Mir, Moscow (1988).

  20. 20.

    A. Zygmund, Trigonometric Series (Cambridge Math. Lib., Vols. 1 and 2), Cambridge Univ. Press, Cambridge (2002).

Download references

Author information

Correspondence to V. S. Vladimirov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vladimirov, V.S. Solutions of p-adic string equations. Theor Math Phys 167, 539–546 (2011). https://doi.org/10.1007/s11232-011-0040-z

Download citation

Keywords

  • p-adic string