Advertisement

Super quasiperiodic wave solutions and asymptotic analysis for \( \mathcal{N} = 1 \) supersymmetric KdV-type equations

  • Y. C. HonEmail author
  • Engui Fan
Article

Abstract

Based on a general multidimensional Riemann theta function and the super Hirota bilinear form, we extend the Hirota method to construct explicit super quasiperiodic (multiperiodic) wave solutions of \( \mathcal{N} = 1 \) supersymmetric KdV-type equations in superspace. We show that the supersymmetric KdV equation does not have an N-periodic wave solution with arbitrary parameters for N ≥ 2. In addition, an interesting influencing band occurs among the super quasiperiodic waves under the presence of a Grassmann variable. We also observe that the super quasiperiodic waves are symmetric about this band but collapse along with it. We present a limit procedure for analyzing the asymptotic properties of the super quasiperiodic waves and rigorously show that the super periodic wave solutions tend to super soliton solutions under some “small amplitude” limits.

Keywords

supersymmetric KdV-type equation super Hirota bilinear method Riemann theta function super quasiperiodic wave solution super soliton solution 

References

  1. 1.
    R. Hirota and J. Satsuma, Progr. Theoret. Phys., 57, 797–807 (1977).CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    R. Hirota, The Direct Methods in Soliton Theory (Cambridge Tracts Math., Vol. 155), Cambridge Univ. Press, Cambridge (2004).CrossRefGoogle Scholar
  3. 3.
    X. B. Hu and P. A. Clarkson, J. Phys. A, 28, 5009–5016 (1995).CrossRefzbMATHADSMathSciNetGoogle Scholar
  4. 4.
    X.-B. Hu, C.-X. Li, J. J. C. Nimmo, and G.-F. Yu, J. Phys. A, 38, 195–204 (2005).CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    R. Hirota and Y. Ohta, J. Phys. Soc. Japan, 60, 798–809 (1991).CrossRefzbMATHADSMathSciNetGoogle Scholar
  6. 6.
    D.-J. Zhang, J. Phys. Soc. Japan, 71, 2649–2656 (2002).CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. 7.
    K. Sawada and T. Kotera, Progr. Theoret. Phys., 51, 1355–1367 (1974).CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    A. A. Nakamura, J. Phys. Soc. Japan, 47, 1701–1705 (1979).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. Nakamura, J. Phys. Soc. Japan, 48, 1365–1370 (1980).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    H. H. Dai, E. G. Fan, and X. G. Geng, “Periodic wave solutions of nonlinear equations by Hirota’s bilinear method,” arXiv:nlin/0602015v1 (2006).Google Scholar
  11. 11.
    Y. C. Hon, E. G. Fan, and Z. Qin, Modern Phys. Lett. B, 22, 547–553 (2008).CrossRefzbMATHADSGoogle Scholar
  12. 12.
    E. G. Fan and Y. C. Hon, Phys. Rev. E, 78, 036607 (2008).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    S. P. Novikov, Funct. Anal. Appl., 8, No. 3, 236–246 (1974).CrossRefzbMATHGoogle Scholar
  14. 14.
    B. A. Dubrovin, Funct. Anal. Appl., 9, No. 3, 215–223 (1975).CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. R. Its and V. B. Matveev, Funct. Anal. Appl., 9, No. 1, 65–66 (1975).CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    P. D. Lax, Comm. Pure Appl. Math., 28, 141–188 (1975).CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    H. P. Mckean and P. van Moerbeke, Invent. Math., 30, 217–274 (1975).CrossRefzbMATHADSMathSciNetGoogle Scholar
  18. 18.
    E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994).zbMATHGoogle Scholar
  19. 19.
    F. Gesztesy and H. Holden, Soliton Equations and Their Algebro-Geometric Solutions (Cambridge Stud. Adv. Math., Vol. 79), Vol. 1, (1+1)-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge (2003).CrossRefzbMATHGoogle Scholar
  20. 20.
    F. Gesztesy and H. Holden, Phil. Trans. Roy. Soc. A, 366, 1025–1054 (2008).CrossRefzbMATHADSMathSciNetGoogle Scholar
  21. 21.
    Z. J. Qiao, Comm. Math. Phys., 239, 309–341 (2003).CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. 22.
    L. Zampogni, Adv. Nonlinear Stud., 7, 345–380 (2007).zbMATHMathSciNetGoogle Scholar
  23. 23.
    R. G. Zhou, J. Math. Phys., 38, 2535–2546 (1997).CrossRefzbMATHADSMathSciNetGoogle Scholar
  24. 24.
    C. Cao, Y. Wu, and X. Geng, J. Math. Phys., 40, 3948–3970 (1999).CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. 25.
    X. G. Geng, Y. T. Wu, and C. W. Cao, J. Phys. A, 32, 3733–3742 (1999).CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 26.
    X. G. Geng and C. W. Cao, Nonlinearity, 14, 1433–1452 (2001).CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    X. G. Geng, H. H. Dai, and J. Y. Zhu, Stud. Appl. Math., 118, 281–312 (2007).MathSciNetGoogle Scholar
  28. 28.
    Y. C. Hon and E. G. Fan, J. Math. Phys., 46, 032701 (2005).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Yu. I. Manin and A. O. Radul, Comm. Math. Phys., 98, 65–77 (1985).CrossRefzbMATHADSMathSciNetGoogle Scholar
  30. 30.
    P. Mathieu, J. Math. Phys., 29, 2499–2506 (1988).CrossRefzbMATHADSMathSciNetGoogle Scholar
  31. 31.
    W. Oevel and Z. Popowicz, Comm. Math. Phys., 139, 441–460 (1991).CrossRefzbMATHADSMathSciNetGoogle Scholar
  32. 32.
    P. Mathieu, Phys. Lett. A, 128, 169–171 (1988).CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Q. P. Liu, Lett. Math. Phys., 35, 115–122 (1995); arXiv:hep-th/9409008v1 (1994).CrossRefzbMATHADSMathSciNetGoogle Scholar
  34. 34.
    Q. P. Liu and Y. F. Xie, Phys. Lett. A, 325, 139–143 (2004); arXiv:nlin/0212002v2 (2002).CrossRefzbMATHADSMathSciNetGoogle Scholar
  35. 35.
    Q. P. Liu and M. Mañas, Phys. Lett. B, 436, 306–310 (1998); arXiv:solv-int/9806005v1 (1998).CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    A. S. Carstea, Nonlinearity, 13, 1645–1656 (2000).CrossRefzbMATHADSMathSciNetGoogle Scholar
  37. 37.
    V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 59, 317–335 (1984).CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 60, 743–765 (1984).CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    D. Mumford, Tata Lectures on Theta (Progress Math., Vol. 43), Vol. 2, Jacobian Theta Functions and Differential Equations, Birkhäuser, Boston, Mass. (1984).zbMATHGoogle Scholar
  40. 40.
    P. P. Kulish and A. M. Zeitlin, Phys. Lett. B, 581, 125–132 (2004); arXiv:hep-th/0312159v1 (2003).CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    P. P. Kulish and A. M. Zeitlin, Phys. Lett. B, 597, 229–236 (2004); arXiv:hep-th/0407154v1 (2004).CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2011

Authors and Affiliations

  1. 1.Department of MathematicsCity University of Hong KongHongkong SARChina
  2. 2.School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear ScienceFudan UniversityShanghaiChina

Personalised recommendations