New dynamical variables in Einstein’s theory of gravity

  • L. D. Faddeev


We describe an alternative formalism for Einstein’s theory of gravity. The role of dynamical variables is played by a collection of ten vector fields f μ A , A = 1,..., 10. The metric is a composite variable, g µν = f µ A f ν A . The proposed scheme may lead to further progress in a theory of gravity where Einstein’s theory is to play the role of an effective theory, with Newton’s constant appearing by introducing an anomalous Green’s function.


Einstein theory of gravity vector fields Hamiltonian formulation 


  1. 1.
    A. Einstein, Ann. Phys., 354, 769–822 (1916); 14, Suppl. 1, 517–571 (2005).CrossRefGoogle Scholar
  2. 2.
    P. A. M. Dirac, Proc. Roy. Soc. London A, 246, 333–343 (1958).CrossRefzbMATHADSMathSciNetGoogle Scholar
  3. 3.
    L. D. Faddeev and V. N. Popov, Sov. Phys. Usp., 16, 777–788 (1974).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    S. Weinberg, Phys. Rev. Lett., 19, 1264–1266 (1967).CrossRefADSGoogle Scholar
  5. 5.
    A. Salam, “Weak and electromagnetic interactions,” in: Elementary Particle Theory (Proc. Nobel Symposium, Lerum, Sweden, 1968, N. Svartholm, ed.), Almquist and Wiksell, Stockholm (1968), p. 367–377.Google Scholar
  6. 6.
    S. L. Adler, Rev. Modern Phys., 54, 729–766 (1982).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. Deser, F. A. E. Pirani, and D. C. Robinson, Phys. Rev. D, 14, 3301–3303 (1976).CrossRefADSGoogle Scholar
  8. 8.
    S. A. Paston and V. A. Franke, Theor. Math. Phys., 153, 1582–1596 (2007); arXiv:0711.0576v1 [gr-qc] (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    L. D. Faddeev, “New variables for the Einstein theory of gravitation,” arXiv:0911.0282v2 [hep-th] (2009).Google Scholar
  10. 10.
    L. D. Faddeev, “3+1 decomposition in the new action for the Einstein theory of gravitation,” arXiv:1003.2311v1 [gr-qc] (2010).Google Scholar
  11. 11.
    L. D. Faddeev and R. Jackiw, Phys. Rev. Lett., 60, 1692–1694 (1988).CrossRefzbMATHADSMathSciNetGoogle Scholar
  12. 12.
    L. D. Faddeev, Sov. Phys. Usp., 25, 130–142 (1982).CrossRefADSGoogle Scholar
  13. 13.
    J. S. Schwinger, Phys. Rev., 130, 1253–1258 (1963).CrossRefzbMATHADSMathSciNetGoogle Scholar
  14. 14.
    R. L. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev., 117, 1595–1602 (1960).CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2011

Authors and Affiliations

  1. 1.St. Petersburg Branch of the Steklov Institute of MathematicsRASSt. PetersburgRussia

Personalised recommendations