Theoretical and Mathematical Physics

, Volume 166, Issue 1, pp 43–57 | Cite as

Hyperbolic equations with third-order symmetries

  • A. G. Meshkov
  • V. V. Sokolov


We present a complete list of nonlinear one-field hyperbolic equations with integrable third-order x and y symmetries. The list includes both equations of the sine-Gordon type and equations linearizable by differential substitutions.


higher symmetry sine-Gordon type equation Liouville-type equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Sokolov and A. B. Shabat, “Classification of integrable evolution equations,” in: Mathematical Physics Reviews (Sov. Sci. Rev., Sect. C, Vol. 4, S. P. Novikov, ed.), Harwood, Chur (1984), pp. 221–280.Google Scholar
  2. 2.
    A. V. Mikhailov, A. B. Shabat and R. I. Yamilov, Russ. Math. Surveys, 42, No. 4, 1–63 (1987).CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    A. V. Mikhajlov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to the classification of integrable equations [in Russian],” in: Integrability and Kinetic Equations for Solitons (V. G. Bakhtar’yar, V. E. Zakharov, and V. M. Chernousenko, eds.), Naukova Dumka, Kiev (1990), pp. 213–279; English transl. in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991), pp. 115–184.Google Scholar
  4. 4.
    S. I. Svinolupov and V. V. Sokolov, Funct. Anal. Appl., 16, No. 4, 317–319 (1982).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S. I. Svinolupov and V. V. Sokolov, “On conservation laws for equations having a nontrivial Lie-Bäcklund algebra [in Russian],” in: Integrable Systems (A. B. Shabat, eds.), Bashkirskii Filial Akademii Nauk SSSR, Ufa (1982), pp. 53–67.Google Scholar
  6. 6.
    A. V. Zhiber and A. B. Shabat, Sov. Phys. Dokl., 24, 607–609 (1979).ADSGoogle Scholar
  7. 7.
    A. V. Zhiber and A. B. Shabat, Sov. Math. Dokl., 30, 23–26 (1984).MATHGoogle Scholar
  8. 8.
    A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 56, 61–101 (2001).MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    S. Ya. Startsev, Theor. Math. Phys., 120, 1009–1018 (1999).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. B. Borisov and S. A. Zykov, Theor. Math. Phys., 115, 530–541 (1998).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. A. Sanders and J. P. Wang, J. Differ. Equations, 147, 410–434 (1998).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. B. Borisov, S. A. Zykov, and M. V. Pavlov, Theor. Math. Phys., 131, 550–557 (2002).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A. V. Zhiber, Russian Acad. Sci. Izv. Math., 45, 33–54 (1995).CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York (1955).Google Scholar

Copyright information

© MAIK/Nauka 2011

Authors and Affiliations

  1. 1.Orel State Technical UniversityOrelRussia
  2. 2.Landau Institute for Theoretical PhysicsRASMoscowRussia

Personalised recommendations