Theoretical and Mathematical Physics

, Volume 165, Issue 2, pp 1512–1516 | Cite as

Gauge equivalence of Tachyon solutions in the cubic Neveu—Schwarz string field theory

  • I. Ya. Aref’eva
  • R. V. Gorbachev


We construct a simple analytic solution of the cubic Neveu—Schwarz (NS) string field theory including the GSO(-) sector. This solution is analogous to the Erler—Schnabl solution in the bosonic case and to the solution in the pure GSO(+) case previously proposed by one of us. We construct exact gauge transformations of the new solution to other known solutions for the NS string tachyon condensation. This gauge equivalence manifestly supports the previous observation that the Erler solution for the pure GSO(+) sector and our solution containing both the GSO(+) and the GSO(-) sectors have the same value of the action density.


string field theory tachyonic condensation D-brane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Schnabl, Adv. Theor. Math. Phys., 10, 433–501 (2006); arXiv:hep-th/0511286v2 (2005).zbMATHMathSciNetGoogle Scholar
  2. 2.
    Y. Okawa, JHEP, 0604, 055 (2006); arXiv:hep-th/0603159v2 (2006).CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    E. Witten, Nucl. Phys. B, 268, 253–294 (1986).CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    T. Erler, JHEP, 0801, 013 (2008); arXiv:0707.4591vl [hep-th] (2007).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    I. Y. Aref’eva, P. B. Medvedev, and A. P. Zubarev, Nucl. Phys. B, 341, 464–498 (1990); Phys. Lett. B, 240, 356-362 (1990).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    C. R. Preitschopf, C. B. Thorn, and S. A. Yost, Nuci. Phys. B, 337, 363–433 (1990).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    I. Y. Aref’eva, A. S. Koshelev, D. M. Belov, and P. B. Medvedev, Nuci. Phys. B, 638, 3–20 (2002); arXiv:hepth/0011117v3 (2000).zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    1. Ya. Arefeva, P. V. Gorbachev, and P. B. Medvedev, Theor. Math. Phys., 158, 320–332 (2009); arXiv:0804.2017v2 [hep-th] (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    1. Y. Aref’eva, R. V. Gorbachev, D. A. Grigoryev, P. N. Khromov, M. V. Mahsev, and P. B. Medvedev, JHEP, 0905, 050 (2009); arXiv:0901.4533v2 [hep-th] (2009).CrossRefADSGoogle Scholar
  10. 10.
    E. Fuchs and M. Kroyter, JHEP, 0810, 054 (2008); arXiv:0805.4386v2 [hep-th] (2008); “Analytical solutions of open string field theory,” arXiv:0807.4722v3 [hep-th] (2008).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    T. Erler and M. Schnabl, JHEP, 0910, 066 (2009); arXiv:0906.0979vl [hep-th] (2009).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    R. V. Gorbachev, Theor. Math. Phys., 162, 90–94 (2010).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. A. Arroyo, J. Phys. A, 43, 445403 (2010); arXiv:1004.3030v6 [hep-th] (2010).CrossRefADSGoogle Scholar
  14. 14.
    T. Erler, JHEP, 0705, 083 (2007); arXiv:hep-th/0611200v4 (2006); 084; arXiv:hep-th/0612050v2 (2006).CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    1. Y. Aref’eva, P. B. Medvedev, and A. P. Zubarev, Modern Phys. Lett. A, 6, 949–958 (1991).CrossRefADSGoogle Scholar
  16. 16.
    M. Kroyter, “Superstring field theory in the democratic picture,” arXiv:0911.2962vl [hep-th] (2009).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Steklov Mathematical Institute, RASMoscowRussia

Personalised recommendations