Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Symmetry factors of Feynman diagrams for scalar fields

Abstract

We calculate the symmetry factors of diagrams for real and complex scalar fields in general form using an analysis of the Wick expansion for Green’s functions. We separate two classes of symmetry factors: factors corresponding to connected diagrams and factors corresponding to vacuum diagrams. The symmetry factors of vacuum diagrams play an important role in constructing the effective action and phase transitions in cosmology. In the complex scalar field theory, diagrams with different topologies can contribute the same, and the inverse symmetry factor for the total contribution is therefore the sum of the inverse symmetry factors.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T.-P. Cheng and L.-F. Li, Gauge Theory of Elementary Particle Physics, Clarendon, Oxford (1984).

  2. 2.

    J. Külbeck, M. Böhm, and A. Denner, Comput. Phys. Coram., 60, 165–180 (1990); T. Hahn, “Generating and calculating one-loop Feynman diagrams with FeynArts, FormCalc, and LoopTools,” arXiv:hep-ph/9905354v1 (1999).

  3. 3.

    P. Nogueira, J. Comput. Phys., 105, 279–289 (1993).

  4. 4.

    B. Kastening, Phys. Rev. D, 57, 3567–3578 (1998); arXiv:hep-ph/9710346v4 (1997); Phys. Rev. E, 61, 3501-3528 (2000); arXiv:hep-th/9908172v2 (1999); H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Phys. Rev. E, 62, 1537-1559 (2000); arXiv:hep-th/9907168v1 (1999).

  5. 5.

    M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, Reading, Mass. (1995).

  6. 6.

    C D. Palmer and M. E. Carrington, Can. J. Phys., 80, 847–854 (2002); arXiv:hep-th/0108088v1 (2001).

  7. 7.

    D. T. Huong and H. N. Long, Phys. Atomic Nuclei, 73, 791–804 (2010); arXiv:0807.2346v2 [hep-ph] (2008).

  8. 8.

    L. H. Ryder, Quantum Field Theory (2nd ed.), Cambridge Univ. Press, Cambridge (1998).

  9. 9.

    A. N. Vasil’ev, Functional Methods in Quantum Field Theory and Statistics [in Russian], Leningrad Univ. Press, Leningrad (1976).

  10. 10.

    M. Kaku, Quantum Field Theory: A Modern Introduction, Clarendon, New York (1993).

  11. 11.

    W. Greiner and J. Reinhardt, Field Quantization, Springer, Berlin (1996).

  12. 12.

    A. D. Linde, Phys. Lett. B, 259, 38–47 (1991).

Download references

Author information

Correspondence to P. V. Dong.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 165, No. 2, pp. 308–322, November, 2010.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, P.V., Hue, L.T., Hung, H.T. et al. Symmetry factors of Feynman diagrams for scalar fields. Theor Math Phys 165, 1500–1511 (2010). https://doi.org/10.1007/s11232-010-0124-1

Download citation

Keywords

  • general properties of perturbation theory
  • factorization