Theoretical and Mathematical Physics

, Volume 164, Issue 3, pp 1128–1135 | Cite as

Bogoliubov equations and functional mechanics

Article

Abstract

The functional classical mechanics based on the probability approach, where a particle is described not by a trajectory in the phase space but by a probability distribution, was recently proposed for solving the irreversibility problem, i.e., the problem of matching the time reversibility of microscopic dynamics equations and the irreversibility of macrosystem dynamics. In the framework of functional mechanics, we derive Bogoliubov-Boltzmann-type equations for finitely many particles. We show that a closed equation for a one-particle distribution function can be rigorously derived in functional mechanics without any additional assumptions required in the Bogoliubov method. We consider the possibility of using diffusion processes and the Fokker-Planck-Kolmogorov equation to describe isolated particles.

Keywords

Boltzmann equation Bogoliubov equation kinetic theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946); English transl. (Stud. Statist. Mech., Vol. 1), North-Holland, Interscience, Amsterdam (1962).Google Scholar
  2. 2.
    L. Boltzmann, Lectures on Gas Theory, Univ. of California Press, Berkeley (1964).Google Scholar
  3. 3.
    A. Poincaré, “Mechanicism and experience [in Russian],” in: Selected Works (by L. Boltzmann; L. S. Polak, ed.), Nauka, Moscow (1984), pp. 434–437.Google Scholar
  4. 4.
    A. Kolmogoroff, Math. Ann., 113, 766–772 (1937).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics [in Russian], Vol. 5, Statistical Physics Part 1: Theory of Equilibrium Systems, Nauka, Moscow (1964); English transl., Pergamon, Oxford (1968).Google Scholar
  6. 6.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Fizmatlit, Moscow (1971); English transl., Consultants Bureau, New York (1974).Google Scholar
  7. 7.
    I. Prigogine, Les lois du chaos, Flammarion, Paris (1993).Google Scholar
  8. 8.
    V. V. Kozlov, Thermal Equilibrium According to Gibbs and Poincaré [in Russian], RKhD, Izhevsk (2002).Google Scholar
  9. 9.
    V. V. Kozlov, Gibbs Ensembles and Non-Equilibrium Statistical Mechanics [in Russian], Inst. Reg. Chaotic Dyn., Izhevsk (2008).Google Scholar
  10. 10.
    V. L. Ginzburg, “What problems in physics and astrophysics seem especially important and interesting at the beginning of the 21st century [in Russian],” in: About Science, Myself, and Others (by V. L. Ginzburg), Fizmatlit, Moscow (2003), pp. 11–74.Google Scholar
  11. 11.
    A. D. Sukhanov, Phys. Part. Nucl., 36, 667–698 (2005).Google Scholar
  12. 12.
    R. Feynman, The Character of Physical Law, MIT Press, Cambridge (1965).Google Scholar
  13. 13.
    V. I. Arnol’d, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1989); English transl. prev. ed. (Grad. Texts Math., Vol. 60), Springer, New York (1978).MATHGoogle Scholar
  14. 14.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications [in Russian], Vol. 2, The Geometry and Topology of Manifolds, Editorial URSS, Moscow (1986); English transl. (Grad. Texts in Math., Vol. 104), Springer, New York (1985).Google Scholar
  15. 15.
    I. V. Volovich, “Number theory as the ultimate physical theory,” Preprint No. TH 4781/87, CERN, Geneva (1987); p-Adic Numbers, Ultrametric Anal. Appl., 2, 77–87 (2010).Google Scholar
  16. 16.
    I. V. Volovich, Theor. Math. Phys., 71, 574–576 (1987).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    V. S. Vladimirov, I. V. Volovich, and Ye. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian], Nauka, Moscow (1994); English transl. (Ser. Sov. East Eur. Math., Vol. 1), World Scientific, Singapore (1994).Google Scholar
  18. 18.
    B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, P-Adic Numbers, Ultrametric Anal. Appl., 1, 1–17 (2009); arXiv:0904.4205v1 [math-ph] (2009).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    I. V. Volovich, Vestn. Samar. Gos. Univ., 8/1, No. 67, 35–55 (2008).Google Scholar
  20. 20.
    I. V. Volovich, “Time irreversibility problem and functional formulation of classical mechanics,” arXiv: 0907.2445v1 [cond-mat.stat-mech] (2009).Google Scholar
  21. 21.
    I. V. Volovich, “Randomness in classical mechanics and quantum mechanics,” Found. Phys., DOI: 10.1007/s10701-010-9450-2 (2010).Google Scholar
  22. 22.
    A. S. Trushechkin and I. V. Volovich, P-Adic Numbers, Ultrametric Anal. Appl., 1, 361–367 (2009); arXiv: 0910.1502v1 [math-ph] (2009).CrossRefMathSciNetGoogle Scholar
  23. 23.
    A. S. Trushechkin, Theor. Math. Phys., 164, 1198–1201 (2010).Google Scholar
  24. 24.
    N. N. Bogoliubov and N. M. Krylov, “Result of the sction of statistical changes of parameters on the motion of dynamical conservative systems during a sufficiently long time [in Ukrainian],” in: Collected Works in Nonlinear Mechanics, Acad. Sci. Ukrainian SSR, Kiev (1937), pp. 119–135; N. N. Bogoliubov, in: Mathematics and Nonlinear Mechanics [in Russian] (Yu. A. Mitropol’skii and A. D. Sukhanov, eds.), Vol. 2, Nonlinear Mechanics, Nauka, Moscow (2005), pp. 730–736.Google Scholar
  25. 25.
    M. Born, Z. Phys., 153, 372–388 (1958).MATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    B. O. Koopman, Proc. Natl. Acad. Sci. USA, 17, 315–318 (1931).CrossRefADSGoogle Scholar
  27. 27.
    D. K. Faddeev and O. A. Yakubovskii, Lectures on Quantum Mechanics for Mathematics Students [in Russian], LSU, Leningrad (1980); English transl. (Student Math. Library, Vol. 47), Amer. Math. Soc., Providence, R. I. (2009).Google Scholar
  28. 28.
    V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1988); English transl. (Pure Appl. Math., Vol. 3), M. Dekker, New York (1971).MATHGoogle Scholar
  29. 29.
    L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum Theory and its Stochastic Limit, Springer, Berlin (2002).MATHGoogle Scholar
  30. 30.
    Yu. V. Prokhorov and Yu. A. Rozanov, Probability Theory [in Russian], Nauka, Moscow (1987).Google Scholar
  31. 31.
    J. D. Anderson, J. K. Campbell, J. E. Ekelund, J. Ellis, and J. F. Jordan, Phys. Rev. Lett., 100, 091102 (2008).CrossRefADSGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations