Advertisement

Theoretical and Mathematical Physics

, Volume 164, Issue 3, pp 1110–1127 | Cite as

Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for SPIN-1/2 particles

  • P. G. Grinevich
  • A. E. Mironov
  • S. P. Novikov
Article

Abstract

We study the manifold of complex Bloch-Floquet eigenfunctions for the zero level of a two-dimensional nonrelativistic Pauli operator describing the propagation of a charged particle in a periodic magnetic field with zero flux through the elementary cell and a zero electric field. We study this manifold in full detail for a wide class of algebraic-geometric operators. In the nonzero flux case, the Pauli operator ground state was found by Aharonov and Casher for fields rapidly decreasing at infinity and by Dubrovin and Novikov for periodic fields. Algebraic-geometric operators were not previously known for fields with nonzero flux because the complex continuation of “magnetic” Bloch-Floquet eigenfunctions behaves wildly at infinity. We construct several nonsingular algebraic-geometric periodic fields (with zero flux through the elementary cell) corresponding to complex Riemann surfaces of genus zero. For higher genera, we construct periodic operators with interesting magnetic fields and with the Aharonov-Bohm phenomenon. Algebraic-geometric solutions of genus zero also generate soliton-like nonsingular magnetic fields whose flux through a disc of radius R is proportional to R (and diverges slowly as R → ∞). In this case, we find the most interesting ground states in the Hilbert space L 2 (ℝ 2 ).

Keywords

two-dimensional Pauli operator one-energy problem algebraic-geometric solution nonzero magnetic flux ground state Bloch-Floquet manifold Aharonov-Bohm effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics [in Russian], Vol. 4, Quantum Electrodynamics, Nauka, Moscow (1980); English transl., Pergamon, Oxford (1982).Google Scholar
  2. 2.
    Y. Aharonov and A. Casher, Phys. Rev. A, 19, 2461–2462 (1979).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    B. A. Dubrovin and S. P. Novikov, JETP, 52, 511–516 (1980).ADSMathSciNetGoogle Scholar
  4. 4.
    B. A. Dubrovin and S. P. Novikov, Sov. Math. Dokl., 22, 240–244 (1980).MATHGoogle Scholar
  5. 5.
    S. P. Novikov and A. P. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations,” in: Solitons, Geometry, and Topology: On the Crossroads (Amer. Math. Soc. Transl. Ser. 2, Vol. 179, V. M. Buchstaber and S. P. Novikov, eds.), Amer. Math. Soc., Providence, R. I. (1997), pp. 109–132; arXiv:math-ph/0003008v1 (2000).Google Scholar
  6. 6.
    J. E. Avron and R. Seiler, Phys. Rev. Lett., 42, 931–934 (1979).CrossRefADSGoogle Scholar
  7. 7.
    P. Grinevich, A. Mironov, and S. Novikov, “New reductions and nonlinear systems for 2D Schrodinger operators,” arxiv:1001.4300v3 [nlin.SI] (2010).Google Scholar
  8. 8.
    S. V. Manakov, Russ. Math. Surveys, 31, No. 5, 245–246 (1976).MATHMathSciNetGoogle Scholar
  9. 9.
    B. G. Konopelchenko, Inverse Problems, 4, 151–163 (1988).CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    P. Grinevich, A. Mironov, and S. Novikov, “2D Schrodinger operator, (2+1) systems, and new reductions: The 2D Burgers hierarchy and inverse problem data,” arxiv:1005.0612v2 [math-ph] (2010).Google Scholar
  11. 11.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Sov. Math. Dokl., 17, 947–951 (1977).Google Scholar
  12. 12.
    B. A. Dubrovin, Russ. Math. Surveys, 36, No. 2, 11–92 (1981).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russ. Math. Surveys, 31, No. 1, 59–146 (1976).CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    A. P. Veselov and S. P. Novikov, Sov. Math. Dokl., 30, 588–591 (1984).MATHGoogle Scholar
  15. 15.
    A. P. Veselov and S. P. Novikov, Sov. Math. Dokl., 30, 705–708 (1984).MATHGoogle Scholar
  16. 16.
    Čerednik I. V., Soviet Phys. Dokl., 25, 450–452 (1980).ADSGoogle Scholar
  17. 17.
    S. P. Novikov, Sov. Math. Dokl., 23, 298–303 (1981).MATHGoogle Scholar
  18. 18.
    S. P. Novikov, J. Sov. Math., 28, 1–20 (1985).CrossRefMATHGoogle Scholar
  19. 19.
    A. S. Lyskova, Russ. Math. Surveys, 36, No. 2, 181–182 (1981).CrossRefADSGoogle Scholar
  20. 20.
    A. S. Lyskova, Russ. Math. Surveys, 36, No. 5, 165–166 (1981).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    J. Zak, Phys. Rev. A, 134, A1602–A1606 (1964).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  • P. G. Grinevich
    • 1
  • A. E. Mironov
    • 2
  • S. P. Novikov
    • 3
  1. 1.Landau Institute for Theoretical PhysicsRASChernogolovka, Moscow OblastRussia
  2. 2.Sobolev Institute for Mathematics, Siberian BranchRASNovosibirskRussia
  3. 3.University of MarylandCollege ParkUSA

Personalised recommendations