Theoretical and Mathematical Physics

, Volume 164, Issue 3, pp 1101–1109 | Cite as

Regularized adelic formulas for string and superstring amplitudes in one-class quadratic fields

Article

Abstract

We obtain regularized adelic formulas for gamma and beta functions for fields of rational numbers and the one-class quadratic fields and arbitrary quasicharacters (ramified or not). We consider applications to four-tachyon tree string amplitudes, generalized Veneziano amplitudes (open string), perturbed Virasoro amplitudes (closed string), massless four-particle tree open and closed superstring amplitudes, Ramond-Neveu-Schwarz superstring amplitudes, and charged heterotic superstring amplitudes. We establish certain relations between different string and superstring amplitudes.

Keywords

adele idele field string 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. O. Freund and E. Witten, Phys. Lett. B, 199, 191–194 (1987).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    I. V. Volovich, Class. Q. Grav., 4, L83–L87 (1987).CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    I. V. Volovich, Lett. Math. Phys., 16, 61–67 (1988).MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    H. Kawai, D. C. Lewellen, and S.-H. H. Tye, Nucl. Phys. B, 269, 1–23 (1986).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    P. G. O. Freund and M. Olson, Phys. Lett. B, 199, 186–190 (1987).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    P. H. Frampton, Y. Okada, and M. R. Ubriaco, Phys. Lett. B, 213, 260–262 (1988).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    I. Ya. Aref’eva, B. G. Dragović, and I. V. Volovich, Phys. Lett. B, 209, 445–450 (1988).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    I. Ya. Aref’eva, B. G. Dragovic, and I. V. Volovich, Phys. Lett. B, 212, 283–291 (1988).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    P. H. Frampton and H. Nishino, Phys. Rev. Lett., 62, 1960–1963 (1989).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Ph. Ruelle, E. Thiran, D. Verstegen, and J. Weyers, Modern Phys. Lett. A, 4, 1745–1752 (1989).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    L. Brekke and P. G. O. Freund, Phys. Rep., 233, 1–66 (1993).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian], Nauka, Moscow (1994); English transl. (Ser. Sov. East Eur. Math., Vol. 1), World Scientific, Singapore (1994).Google Scholar
  13. 13.
    V. S. Vladimirov, Lett. Math. Phys., 27, 123–131 (1993).MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    V. S. Vladimirov, “Adelic formulas for gamma- and beta-functions in algebraic number fields,” in: p-Adic Functional Analysis (Lect. Notes Pure Appl. Math., Vol. 192, W. H. Schikhof, C. Perez-Garcia, and J. Kakol, eds.), M. Dekker, New York (1997), pp. 383–395.Google Scholar
  15. 15.
    V. S. Vladimirov, Izv. Math., 60, 67–90 (1996).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    V. S. Vladimirov, Proc. Steklov Inst. Math., 245, 3–21 (2004).Google Scholar
  17. 17.
    V. S. Vladimirov, Proc. Steklov Inst. Math., 224, 107–114 (1999).Google Scholar
  18. 18.
    V. S. Vladimirov, Izv. Math., 66, 41–57 (2002).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. V. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vols. 1 and 2, Cambridge Univ. Press, Cambridge (1987).Google Scholar
  20. 20.
    I. M. Gel’fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions [in Russian], Nauka, Moscow (1966); English transl., Saunders, Philadelphia, Pa. (1969).MATHGoogle Scholar
  21. 21.
    W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis (Cambridge Stud. Adv. Math., Vol. 4), Cambridge Univ. Press, Cambridge (1984).MATHGoogle Scholar
  22. 22.
    A. Weil, Basic Number Theory (Grundlehren Math. Wissenschaften, Vol. 144), Springer, Heidelberg (1967).MATHGoogle Scholar
  23. 23.
    Z. I. Borevich and I. R. Shafarevich, Number Theory [in Russian], Nauka, Moscow (1985); English transl. prev. ed., Acad. Press, New York (1966).MATHGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations