Theoretical and Mathematical Physics

, Volume 164, Issue 2, pp 992–1001 | Cite as

Some integral equations related to random Gaussian processes

Article
  • 116 Downloads

Abstract

To calculate the Laplace transform of the integral of the square of a random Gaussian process, we consider a nonlinear Volterra-type integral equation. This equation is a Ward identity for the generating correlation function. It turns out that for an important class of correlation functions, this identity reduces to a linear ordinary differential equation. We present sufficient conditions for this equation to be integrable (the equation coefficients are constant). We calculate the Laplace transform exactly for some concrete random Gaussian processes such as the “Brownian bridge” model and the Ornstein-Uhlenbeck model.

Keywords

random process integral equation Laplace transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Kleptsyna and A. Le Breton, Stoch. Stoch. Rep., 72, 229–250 (2002).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. L. Kleptsyna, P. E. Kloeden, and V. V. Anh, Stochastic Anal. Appl., 16, 907–914 (1998).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Revuz and M. Yor, Continuous Martingales and Brownian Motion (Grundlehren Math. Wiss., Vol. 293), Springer, Berlin (1991).MATHGoogle Scholar
  4. 4.
    R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes [in Russian], Nauka, Moscow (1974); English transl., Springer, New York (1978).Google Scholar
  5. 5.
    R. H. Cameron and W. T. Martin, Bull. Amer. Math. Soc., 51, 73–90 (1945).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. I. Yashin, J. Appl. Probab., 30, 247–251 (1993).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    V. E. Zaharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl., Plenum, New York (1984).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASMoscowRussia

Personalised recommendations