Theoretical and Mathematical Physics

, Volume 164, Issue 1, pp 929–946 | Cite as

The ring of physical states in the M(2, 3) minimal Liouville gravity

  • O. V. Alekseev
  • M. A. Bershtein


We consider the M(2, 3) minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Virasoro algebra. We find a certain algebra acting on the BRST cohomology space and use this algebra to find the operator algebra of physical states.


conformal field theory Liouville gravity BRST cohomology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Polyakov, Phys. Lett. B, 103, 207–210 (1981).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    J. Distler and H. Kawai, Nucl. Phys. B, 321, 509–527 (1989); F. David, Modern Phys. Lett. A, 3, 1651–1656 (1988).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Al. B. Zamolodchikov, Theor. Math. Phys., 142, 183–196 (2005); arXiv:hep-th/0505063v1 (2005).zbMATHMathSciNetGoogle Scholar
  5. 5.
    A. A. Belavin and Al. B. Zamolodchikov, Theor. Math. Phys., 147, 729–754 (2006); “Polyakov’s string: Twenty five years after,” arXiv:hep-th/0510214v1 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    B. H. Lian and G. J. Zuckerman, Phys. Lett. B, 254, 417–423 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    B. Feigin and D. Fuchs, “Representations of the Virasoro algebra,” in: Representations of Lie Groups and Related Topics (Adv. Stud. Contemp. Math., Vol. 7, A. M. Vershik and D. P. Zhelobenko, eds.), Gordon and Breach, New York (1990), pp. 465–554.Google Scholar
  8. 8.
    H. Kanno and M. Sarmadi, Internat. J. Mod. Phys. A, 9, 39–56 (1994); arXiv:hep-th/9207078v1 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. Zamolodchikov and Al. Zamolodchikov, Nucl. Phys. B, 477, 577–605 (1996); arXiv:hep-th/9506136v2 (1995).zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    C. Imbimbo, S. Mahapatra, and S. Mukhi, Nucl. Phys. B, 375, 399–420 (1992).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    B. L. Feigin and D. B. Fuchs, “Verma modules over the Virasoro algebra,” in: Topology (Lect. Notes Math., Vol. 1060, L. D. Faddeev and A. A. Mal’cev, eds.), Springer, Berlin (1984), pp. 230–245.CrossRefGoogle Scholar
  12. 12.
    E. Frenkel, Phys. Lett. B, 286, 71–77 (1992).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    S. Govindarajan, T. Jayaraman, V. John, and P. Majumdar, Modern Phys. Lett. A, 7, 1063–1077 (1992); arXiv:hep-th/9112033v1 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    S. Govindarajan, T. Jayaraman, and V. John, Nucl. Phys. B, 402, 118–136 (1993); arXiv:hep-th/9207109v1 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    I. B. Frenkel, H. Garland, and G. J. Zuckerman, Proc. Nat. Acad. Sci. USA, 83, 8442–8446 (1986).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    L. V. Goncharova, Funct. Anal. Appl., 7, No. 2, 91–97 (1973).zbMATHCrossRefGoogle Scholar
  17. 17.
    M. Bauer, P. Di Francesco, C. Itzykson, and J.-B. Zuber, Nucl. Phys. B, 362, 515–562 (1991).CrossRefADSGoogle Scholar
  18. 18.
    H. Dorn and H.-J. Otto, Phys. Lett. B, 291, 39–43 (1992); arXiv:hep-th/9206053v1 (1992); Nucl. Phys. B, 429, 375–388 (1994); arXiv:hep-th/9403141v3 (1994).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    P. Griffits and J. Harris, Principles of Algebraic Geometry, Wiley, New York (1994).Google Scholar
  20. 20.
    B. H. Lian and G. J. Zuckerman, Comm. Math. Phys., 154, 613–646 (1993); arXiv:hep-th/9211072v1 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASChernogolovka, Moscow OblastRussia
  2. 2.Independent University of MoscowMoscowRussia

Personalised recommendations