Advertisement

Theoretical and Mathematical Physics

, Volume 163, Issue 3, pp 774–781 | Cite as

Tunneling/WKB and anomaly methods for Rindler and de sitter space-times

  • V. E. Akhmedova
  • T. Pilling
  • A. de Gill
  • D. Singleton
Article

Abstract

We consider the WKB/tunneling method explicitly in the context of its application to the Rindler and de Sitter space-times. We also present two gravitational anomaly methods (consistent and covariant). The anomaly methods applied to the Rindler space-time do not reproduce the expected Unruh radiation, because the Rindler space-time does not have an anomaly. The consistent and the covariant anomaly methods give different results for the de Sitter space-time. In contrast to them, the WKB/tunneling method is a semiclassical calculation in which the radiation is regarded as a tunneling of quantum fields across the horizon. The tunneling method is applicable in all the indicated cases. But to recover the correct Gibbons-Hawking temperature, a previously overlooked temporal piece that contributes to the total action must be taken into account.

Keywords

Hawking radiation Unruh effect semiclassical tunneling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Hawking, Comm. Math. Phys., 43, 199–220 (1975).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    W. G. Unruh, Phys. Rev. D, 14, 870–892 (1976).CrossRefADSGoogle Scholar
  3. 3.
    G. W. Gibbons and S. W. Hawking, Phys. Rev. D, 15, 2738–2751 (1977).CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    D. G. Boulware, Phys. Rev. D, 11, 1404–1423 (1974).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    J. B. Hartle and S. W. Hawking, Phys. Rev. D, 13, 2188–2203 (1976).CrossRefADSGoogle Scholar
  6. 6.
    W. G. Unruh and N. Weiss, Phys. Rev. D, 29, 1656–1662 (1984).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    N. B. Narozhny, A. M. Fedotov, B. M. Karnakov, V. D. Mur, and V. A. Belinskii, Phys. Rev. D, 65, 025004 (2002).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    P. Kraus and F. Wilczek, Nucl. Phys. B, 433, 403–420 (1995).CrossRefADSGoogle Scholar
  9. 9.
    K. Srinivasan and T. Padmanabhan, Phys. Rev. D, 60, 024007 (1999); S. Shankaranarayanan, T. Padmanabhan, and K. Srinivasan, Class. Q. Grav., 19, 2671–2687 (2002).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    G. E. Volovik, JETP Lett., 69, 705–713 (1999).CrossRefADSGoogle Scholar
  11. 11.
    V. A. Berezin, A. M. Boyarsky, and A. Yu. Neronov, Gravit. Cosmol., 5, 16–22 (1999).zbMATHMathSciNetADSGoogle Scholar
  12. 12.
    M. K. Parikh and F. Wilczek, Phys. Rev. Lett., 85, 5042–5045 (2000); M. K. Parikh, Internat. J. Mod. Phys. D, 13, 2351–2354 (2004).CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    A. J. M. Medved and E. C. Vagenas, Modern Phys. Lett. A, 20, 1723–1728, 2449–2453 (2005); M. Arzano, A. J. M. Medved, and E. C. Vagenas, JHEP, 0509, 037 (2005); E. C. Vagenas, Nuovo Cimento B, 117, 899 (2002).zbMATHCrossRefADSGoogle Scholar
  14. 14.
    M. Angheben, M. Nadalini, L. Vanzo, and S. Zerbini, JHEP, 0505, 014 (2005); M. Nadalini, L. Vanzo, and S. Zerbini, J. Phys. A, 39, 6601–6608 (2006).CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    R. Banerjee and B. R. Majhi, JHEP, 0806, 095 (2008); Phys. Lett. B, 662, 62–65 (2008).CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    R. Banerjee and B. R. Majhi, Phys. Lett. B, 675, 243–245 (2009).CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    T. Pilling, Phys. Lett. B, 660, 402–406 (2008).CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    B. Zhang, Q.-Y. Cai, and M.-S. Zhan, Phys. Lett. B, 665, 260–263 (2008).CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    R. Banerjee, B. R. Majhi, and S. Samanta, Phys. Rev. D, 77, 124035 (2008).CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, Phys. Lett. B, 673, 227–231 (2009).CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    E. T. Akhmedov, T. Pilling, and D. Singleton, Internat. J. Mod. Phys. D, 17, 2453–2458 (2008).zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, Phys. Lett. B, 666, 269–271 (2008).CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    S. P. Robinson and F. Wilczek, Phys. Rev. Lett., 95, 011303 (2005).CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    E. C. Vagenas and S. Das, JHEP, 0610, 025 (2006); S. Das, S. P. Robinson, and E. C. Vagenas, Internat. J. Mod. Phys. D, 17, 533–539 (2008).CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    G. E. Volovik, “Is there analogy between quantized vortex and black hole?” arXiv:gr-qc/9510001v2 (1995).Google Scholar
  26. 26.
    S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. Lett., 96, 151302 (2006).CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    K. Murata and J. Soda, Phys. Rev. D, 74, 044018 (2006).CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. D, 74, 044017 (2006).CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    S. M. Christensen and S. A. Fulling, Phys. Rev. D, 15, 2088–2104 (1977).CrossRefADSGoogle Scholar
  30. 30.
    L. Alvarez-Gaumé and E. Witten, Nucl. Phys. B, 234, 269–330 (1983).CrossRefADSGoogle Scholar
  31. 31.
    R. A. Bertlmann and E. Kohlprath, Ann. Phys., 288, 137–163 (2001).zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    S.-Q. Wu, J.-J. Peng, and Z.-Y. Zhao, Class. Q. Grav., 25, 135001 (2008).CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    R. Banerjee and S. Kulkarni, Phys. Rev. D, 77, 024018 (2008); Phys. Lett. B, 659, 827–831 (2008).CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    E. T. Akhmedov, V. Akhmedova, D. Singleton, and T. Pilling, Internat. J. Mod. Phys. A, 22, 1705–1715 (2007).zbMATHCrossRefADSGoogle Scholar
  35. 35.
    E. T. Akhmedov, V. Akhmedova, and D. Singleton, Phys. Lett. B, 642, 124–128 (2006).CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    B. D. Chowdhury, Pramana, 70, 3–26 (2008).CrossRefADSGoogle Scholar
  37. 37.
    S. Ghosh, “Unifying the tunneling and anomaly phenomena in Hawking radiation,” arXiv:0804.2999v3 [hep-th] (2008).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  • V. E. Akhmedova
    • 1
  • T. Pilling
    • 2
  • A. de Gill
    • 3
  • D. Singleton
    • 3
  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Department of PhysicsNorth Dakota State UniversityFargoUSA
  3. 3.Physics DepartmentCalifornia State University FresnoFresnoUSA

Personalised recommendations