Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A simple analytic solution for tachyon condensation

Abstract

We discuss a new, simple analytic solution for tachyon condensation in open string field theory. In particular, the new solution requires no regularization or “phantom term,” and the proof of Sen’s first conjecture requires only a few lines of calculation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Schnabl, Adv. Theor. Math. Phys., 10, 433–501 (2006); arXiv:hep-th/0511286v2 (2005).

  2. 2.

    A. Sen, JHEP, 9912, 027 (1999); arXiv:hep-th/9911116v2 (1999).

  3. 3.

    T. Takahashi, JHEP, 0801, 001 (2008); arXiv:0710.5358v2 [hep-th] (2007).

  4. 4.

    T. Erler and M. Schnabl, JHEP, 0910, 066 (2009); arXiv:0906.0979v1 [hep-th] (2009).

  5. 5.

    Y. Okawa, JHEP, 0604, 055 (2006); arXiv:hep-th/0603159v2 (2006).

  6. 6.

    T. Erler, JHEP, 0705, 083 (2007); arXiv:hep-th/0611200v4 (2006).

  7. 7.

    I. Ellwood, B. Feng, Y. He, and N. Moeller, JHEP, 0107, 016 (2001); arXiv:hep-th/0105024v2 (2001).

  8. 8.

    I. Ellwood and M. Schnabl, JHEP, 0702, 096 (2007); arXiv:hep-th/0606142v2 (2006).

  9. 9.

    M. Gaberdiel and B. Zwiebach, Nucl. Phys. B, 505, 569–624 (1997); arXiv:hep-th/9705038v1 (1997).

Download references

Author information

Correspondence to T. Erler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erler, T. A simple analytic solution for tachyon condensation. Theor Math Phys 163, 705–709 (2010). https://doi.org/10.1007/s11232-010-0053-z

Download citation

Keywords

  • string field theory
  • tachyon condensation