Advertisement

Theoretical and Mathematical Physics

, Volume 163, Issue 2, pp 549–586 | Cite as

Integrable (2+1)-dimensional systems of hydrodynamic type

  • A. V. Odesskii
  • V. V. Sokolov
Article

Abstract

We describe the results that have so far been obtained in the classification problem for integrable (2+1)-dimensional systems of hydrodynamic type. The Gibbons-Tsarev (GT) systems are most fundamental here. A whole class of integrable (2+1)-dimensional models is related to each such system. We present the known GT systems related to algebraic curves of genus g = 0 and g = 1 and also a new GT system corresponding to algebraic curves of genus g = 2. We construct a wide class of integrable models generated by the simplest GT system, which was not considered previously because it is “trivial.”

Keywords

dispersionless integrable system hydrodynamic reduction Gibbons-Tsarev system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alan C. Newell, Solitons in Mathematics and Physics (CBMS-NSF Reg. Conf. Ser. Appl. Math., Vol. 48), SIAM, Philadelphia, Pa. (1985).Google Scholar
  2. 2.
    L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach to the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. A. Takhtadzhyan, The Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (1987).Google Scholar
  3. 3.
    V. E. Zakharov, ed., What is Integrability? Springer, Berlin (1991).Google Scholar
  4. 4.
    A. V. Mikhailov, Integrability (Lect. Notes Phys., Vol. 767), Springer, Berlin (2009).MATHCrossRefGoogle Scholar
  5. 5.
    E. V. Zakharov, “Dispersionless limit of integrable systems in 2+1 dimensions,” in: Singular Limits of Dispersive Waves (NATO ASI Ser. B Phys., Vol. 320, N. M. Ercolani, I. R. Gabitov, C. D. Levermore, and D. Serre, eds.), Plenum, New York (1994), pp. 165–174.Google Scholar
  6. 6.
    I. M. Krichever, Comm. Pure Appl. Math., 47, 437–475 (1994).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. V. Odesskii and V. V. Sokolov, Funct. Anal. Appl., 42, No. 3, 205–212 (2008).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 13, No. 3, 166–174 (1979).MATHMathSciNetGoogle Scholar
  9. 9.
    M. V. Saveliev and A. M. Vershik, Comm. Math. Phys., 126, 367–378 (1989).MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    S. V. Manakov and P. M. Santini, Phys. Lett. A, 359, 613–619 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    S. V. Manakov and P. M. Santini, Theor. Math. Phys., 152, 1004–1011 (2007).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Gibbons and S. P. Tsarev, Phys. Lett. A, 211, 19–24 (1996).MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    E. V. Ferapontov and K. R. Khusnutdinova, Comm. Math. Phys., 248, 187–206 (2004).MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    E. V. Ferapontov and K. R. Khusnutdinova, J. Phys. A, 37, 2949–2963 (2004).MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    E. V. Ferapontov and K. R. Khusnutdinova, J. Math. Phys., 45, 2365–2377 (2004).MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    A. V. Odesskii, Selecta Math., 13, 727–742 (2008); arXiv:0704.3577v3 [math.AP] (2007).CrossRefMathSciNetGoogle Scholar
  17. 17.
    E. V. Ferapontov, K. R. Khusnutdinova, and S. P. Tsarev, Comm. Math. Phys., 261, 225–243 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    E. V. Ferapontov and A. V. Odesskii, “Integrable Lagrangians and modular forms,” arXiv:0707.3433v2 [nlin.SI] (2007).Google Scholar
  19. 19.
    P. A. Burovskiy, E. V. Ferapontov, and S. P. Tsarev, “Second order quasilinear PDEs and conformal structures in projective space,” arXiv:0802.2626v3 [nlin.SI] (2008).Google Scholar
  20. 20.
    A. V. Odesskii and V. V. Sokolov, “Integrable pseudopotentials related to generalized hypergeometric functions,” arXiv:0803.0086v3 [nlin.SI] (2008).Google Scholar
  21. 21.
    I. M. Gel’fand, M. I. Graev, and V. S. Retakh, Russ. Math. Surveys, 47, 1–88 (1992).CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    E. V. Ferapontov, L. Hadjikos, and K. R. Khusnutdinova, “Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian,” arXiv:0705.1774v1 [math.DG] (2007).Google Scholar
  23. 23.
    M. V. Pavlov, Theor. Math. Phys., 138, 45–58 (2004).MATHCrossRefGoogle Scholar
  24. 24.
    M. V. Pavlov, J. Phys. A, 39, 10803–10819 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    E. V. Ferapontov and D. G. Marshal, Math. Ann., 339, 61–99 (2007).MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    I. M. Krichever, Comm. Math. Phys., 143, 415–429 (1992).MATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    A. V. Odesskii, M. V. Pavlov, and V. V. Sokolov, Theor. Math. Phys., 154, 209–219 (2008); arXiv:0710.5655v2 [nlin.SI] (2007).CrossRefMathSciNetGoogle Scholar
  28. 28.
    A. V. Odesskii and V. V. Sokolov, Theor. Math. Phys., 161, 1340–1352 (2009); arXiv:0810.3879v1 [nlin.SI] (2008).MATHCrossRefGoogle Scholar
  29. 29.
    V. P. Spiridonov, Russ. Math. Surveys, 63, 405–472 (2008).MATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    K. Löwner, Math. Ann., 89, 103–121 (1923).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    K. Takasaki and T. Takebe, Rev. Math. Phys., 7, 743–808 (1995).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    V. Shramchenko, J. Phys. A, 36, 10585–10605 (2003).MATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    T. Takebe, L.-P. Leo, and A. Zabrodin, J. Phys. A, 39, 11479–11501 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    M. Mañas, E. Medina, and L. Martínes Alonso, J. Phys. A, 39, 2349–2381 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    A. V. Mikhailov and V. V. Sokolov, “Symmetries of differential equations and the problem of integrability,” in: Integrability (Lect. Notes Phys., Vol. 767, A. V. Mikhailov, ed.), Springer, Berlin (2009), pp. 19–88.CrossRefGoogle Scholar
  36. 36.
    A. V. Mikhailov and R. I. Yamilov, J. Phys. A, 31, 6707–6715 (1998).MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    B. A. Dubrovin and S. P. Novikov, Russ. Math. Surveys, 44, 35–124 (1989).MATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    S. P. Tsarëv, Math. USSR-Izv., 37, 397–419 (1991).CrossRefMathSciNetGoogle Scholar
  39. 39.
    S. P. Tsarëv, Sov. Math. Dokl., 31, 488–491 (1985).MATHGoogle Scholar
  40. 40.
    E. V. Ferapontov, Phys. Lett. A, 158, 112–118 (1991).CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    M. V. Pavlov, J. Math. Phys., 44, 4134–4156 (2003).MATHCrossRefMathSciNetADSGoogle Scholar
  42. 42.
    M. V. Pavlov, Comm. Math. Phys., 272, 469–505 (2007).MATHCrossRefMathSciNetADSGoogle Scholar
  43. 43.
    E. V. Ferapontov, K. R. Khusnutinova, and C. Klein, “On linear degeneracy of integrable quasilinear systems in higher dimensions,” arXiv:0909.5685v2 [nlin.SI] (2009).Google Scholar
  44. 44.
    A. V. Odesskii and V. V. Sokolov, “Systems of Gibbons-Tsarev type and integrable 3-dimensional models,” arXiv:0906.3509v1 [nlin.SI] (2009).Google Scholar
  45. 45.
    D. J. Benney, Stud. Appl. Math., 52, 45–50 (1973).MATHGoogle Scholar
  46. 46.
    B. A. Kupershmidt and Yu. I. Manin, Funct. Anal. Appl., 11, No. 3, 188–197 (1977).CrossRefMathSciNetGoogle Scholar
  47. 47.
    V. E. Zakharov, Phys. D, 3, 193–202 (1981).CrossRefGoogle Scholar
  48. 48.
    L. Martínez Alonso and A. B. Shabat, Theor. Math. Phys., 140, 1073–1085 (2004).MATHCrossRefGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASMoscowRussia
  2. 2.Brock UniversitySt. CatharinesCanada

Personalised recommendations