Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The two-component Camassa-Holm equation with self-consistent sources and its multisoliton solutions

  • 68 Accesses

  • 1 Citations

Abstract

We derive the two-component Camassa-Holm equation with self-consistent sources and its Lax representation. We construct the conservation laws for this equation and present multisoliton solutions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Camassa and D. D. Holm, Phys. Rev. Lett., 71, 1661–1664 (1993).

  2. 2.

    R. Camassa, D. D. Holm, and J. M. Hyman, Adv. Appl. Mech., 31, 1–33 (1994).

  3. 3.

    B. Fuchssteiner and A. S. Fokas, Phys. D, 4, 47–66 (1981).

  4. 4.

    A. Constantin, V. S. Gerdjikov, and R. I. Ivanov, Inverse Problems, 22, 2197–2207 (2006).

  5. 5.

    A. Parker, Proc. Roy. Soc. London Ser. A, 460, 2929–2957 (2004).

  6. 6.

    A. Constantin and W. Strauss, Comm. Pure Appl. Math., 53, 603–610 (2000).

  7. 7.

    R. Beals, D. H. Sattinger, and J. Szmigielski, Inverse Problems, 15, L1–L4 (1999).

  8. 8.

    A. Constantin, Invent. Math., 166, 523–535 (2006).

  9. 9.

    R. S. Johnson, Proc. Roy. Soc. London Ser. A, 459, 1687–1708 (2003).

  10. 10.

    Y. S. Li and J. E. Zhang, Proc. Roy. Soc. London Ser. A, 460, 2617–2627 (2004).

  11. 11.

    A. B. Shabat and L. Martínez Alonso, “On the prolongation of a hierarchy of hydrodynamic chains,” in: New Trends in Integrability Partial Solvability (NATO Sci. Ser. II Math. Phys. Chem., Vol. 132, A. B. Shabat, A. González-López, M. Mañas, L. Martinez Alonso, and M. A. Rodriguez, eds.), Kluwer, Dordrecht (2004), pp. 263–280.

  12. 12.

    R. I. Ivanov, Z. Naturforsch. A, 61a, 133–138 (2006); arXiv:nlin/0601066v1 (2006).

  13. 13.

    S.-Q. Liu and Y. Zhang, J. Geom. Phys., 54, 427–453 (2005).

  14. 14.

    M. Chen, S.-Q. Liu, and Y. Zhang, Lett. Math. Phys., 75, 1–15 (2006).

  15. 15.

    P. J. Olver and P. Rosenau, Phys. Rev. E, 53, 1900–1906 (1996).

  16. 16.

    A. Constantin and R. I. Ivanov, Phys. Lett. A, 372, 7129–7132 (2008).

  17. 17.

    J. Lin, B. Ren, H.-M. Li, and Y.-S. Li, Phys. Rev. E, 77, 036605 (2008).

  18. 18.

    H. Aratyn, J. F. Gomes, and A. H. Zimerman, J. Phys. A, 39, 1099–1114 (2006).

  19. 19.

    G. Falqui, J. Phys. A, 39, 327–342 (2006).

  20. 20.

    J. Escher, O. Lechtenfeld, and Z. Yin, Discrete Contin. Dynam. Systems, 19, 493–513 (2007).

  21. 21.

    V. K. Mel’nikov, Phys. Lett. A, 133, 493–496 (1988).

  22. 22.

    V. K. Mel’nikov, Comm. Math. Phys., 126, 201–215 (1989).

  23. 23.

    J. Leon and A. Latifi, J. Phys. A, 23, 1385–1403 (1990).

  24. 24.

    D. J. Kaup, Phys. Rev. Lett., 59, 2063–2066 (1987).

  25. 25.

    Y. Zeng, Phys. D, 73, 171–188 (1994).

  26. 26.

    Y. Zeng, W.-X. Ma, and Y. Shao, J. Math. Phys., 42, 2113–2128 (2001).

  27. 27.

    M. Blaszak, J. Math. Phys., 36, 4826–4831 (1995).

  28. 28.

    Y. Zeng, Y. Shao, and W. Xue, J. Phys. A, 36, 5035–5043 (2003).

  29. 29.

    R. Lin, Y. Zeng, and W.-X. Ma, Phys. A, 291, 287–298 (2001).

  30. 30.

    Y. Huang, Y. Zeng, and O. Ragnisco, J. Phys. A, 41, 355203 (2008).

Download references

Author information

Correspondence to Yuqin Yao.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 162, No. 1, pp. 75–86, January, 2010. Original article submitted November 21, 2008; revised March 14, 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yao, Y., Huang, Y. & Zeng, Y. The two-component Camassa-Holm equation with self-consistent sources and its multisoliton solutions. Theor Math Phys 162, 63–73 (2010). https://doi.org/10.1007/s11232-010-0004-8

Download citation

  • two-component Camassa-Holm equation with self-consistent sources
  • reciprocal transformation
  • Darboux transformation
  • soliton