Theoretical and Mathematical Physics

, Volume 161, Issue 3, pp 1599–1603 | Cite as

The dressing method and separation of variables: The two-dimensional case



Separation of variables is very convenient for obtaining solutions of linear differential equations in explicit form. We use the dressing method to widen the class of such equations. As an example, we dress a two-dimensional linear differential operator, including an operator with constant coefficients.


separation of variables dressing method Schrödinger operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Première partie. Généralités. Coordonnées curvilignes. Surfaces minima (Reprint of 2nd ed. of 1914), Chelsea, New York (1972).Google Scholar
  2. 2.
    A. B. Shabat, Theor. Math. Phys., 103, 482–485 (1995).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. V. Ferapontov and A. P. Veselov, J. Math. Phys., 42, 590–607 (2001).MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    I. A. Taimanov and S. P. Tsarev, Theor. Math. Phys., 157, 1525–1541 (2008).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. A. Skvortsov and P. M. Ostrovsky, JETP Lett., 85, 72–76 (2007).CrossRefADSGoogle Scholar
  6. 6.
    W. Miller Jr., Symmetry and Separation of Variables (Encycl. Math. Appl., Vol. 4), Addison-Wesley, Reading, Mass. (1977).MATHGoogle Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Landau Institute for Theoretical Physics, RASMoscowRussia

Personalised recommendations