Vector hyperbolic equations with higher symmetries

  • A. G. MeshkovEmail author


We list eleven vector hyperbolic equations that have third-order symmetries with respect to both characteristics. This list exhausts the equations with at least one symmetry of a divergence form. We integrate four equations in the list explicitly, bring one to a linear form, and bring four more to nonlinear ordinary nonautonomous systems. We find the Bäcklund transformations for six equations.


hyperbolic equation higher symmetry integral Bäcklund transformation exact integrability 


  1. 1.
    N. Kh. Ibragimov, Groups of Transformations in Mathematical Physics [in Russian], Nauka, Moscow (1983); English transl.: N. H. Ibragimov Transformation Groups Applied in Mathematical Physics, Reidel, Dordrecht (1985).Google Scholar
  2. 2.
    P. J. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts in Math., Vol. 107), Springer, New York (1986).zbMATHGoogle Scholar
  3. 3.
    A. S. Fokas, Stud. Appl. Math., 77, 253–299 (1987).zbMATHMathSciNetGoogle Scholar
  4. 4.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, No. 4, 1–63 (1987).CrossRefMathSciNetGoogle Scholar
  5. 5.
    A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, “Symmetry approach to classification of integrable equations,” in: Integrability and Kinetic Equations for Solitons [in Russian] (V. G. Bakhtar’yar, V. E. Zakharov, and V. M. Chernousenko, eds.), Naukova Dumka, Kiev (1990), pp. 213–279; A. V. Mikhajlov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to the classification of integrable equations,” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991), pp. 115–184.Google Scholar
  6. 6.
    S. C. Anco and T. Wolf, J. Nonlinear Math. Phys., 12Suppl. 1, 13–31 (2005).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 56, 61–101 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. G. Meshkov and V. V. Sokolov, Theor. Math. Phys., 139, 609–622 (2004).CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. G. Meshkov and V. V. Sokolov, Comm. Math. Phys., 232, 1–18 (2002).zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    R. M. Miura, ed., Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications (Lect. Notes Math., Vol. 515), Springer, Berlin (1976).zbMATHGoogle Scholar
  11. 11.
    A. G. Meshkov, J. Math. Sci. (New York), 151, 3167–3181 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Yu. Balakhnev, Theor. Math. Phys., 154, 220–226 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. L. Lamb Jr., Elements of Soliton Theory, Wiley, New York (1980).zbMATHGoogle Scholar
  14. 14.
    M. Yu. Balakhnev, Math. Notes, 82, 448–450 (2007).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Orel State University for TechnologyOrelRussia

Personalised recommendations