Discrete Toda lattices and the Laplace method

  • V. L. VereschaginEmail author


We apply the Laplace cascade method to systems of discrete equations of the form u i+1,j+1 = f(u i+1,j , u i,j+1, u i,j , u i,j−1), where u ij , i, j ∈ ℤ, is an element of a sequence of unknown vectors. We introduce the concept of a generalized Laplace invariant and the related property that the systems is “of the Liouville type.” We prove a series of statements about the correctness of the definition of the generalized invariant and its applicability for seeking solutions and integrals of the system. We give some examples of systems of the Liouville type.


nonlinear discrete equation Laplace method Darboux integrability 


  1. 1.
    G. Darboux, Leçons sur la théorie des surfaces, Vol. 2, Gauthier-Villars, Paris (1889).Google Scholar
  2. 2.
    I. M. Anderson and N. Kamran, Duke Math. J., 87, 265–319 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. V. Zhiber, V. V. Sokolov, and S. Ya. Startsev, Dokl. Math., 52, 128–130 (1995).zbMATHGoogle Scholar
  4. 4.
    A. V. Zhiber, and V. V. Sokolov, Method of Laplace Cascade Integration and Darboux Integrable Equations [in Russian], RITs Bashkir State University, Ufa (1996).Google Scholar
  5. 5.
    V. E. Adler and S. Ya. Startsev, Theor. Math. Phys., 121, 1484–1495 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 6, 61–101 (2001).CrossRefMathSciNetGoogle Scholar
  7. 7.
    A. M. Gurieva, “Method of Laplace cascade integration and nonlinear hyperbolic systems of equations [in Russian],” Doctoral dissertation, Ufa State Aviation University, Ufa (2005).Google Scholar
  8. 8.
    R. Hirota, J. Phys. Soc. Japan, 46, 312–319 (1979).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    R. Hirota, J. Phys. Soc. Japan, 50, 3785–3791 (1981).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    D. Levi, L. Pilloni, and P. M. Santini, J. Phys. A, 14, 1567–1575 (1981).zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    R. S. Ward, Phys. Lett. A, 199, 45–48 (1995).zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    A. Doliwa, Phys. Lett. A, 234, 187–192 (1997).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    V. L. Vereshchagin, Theor. Math. Phys., 156, 1142–1153 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    S. P. Novikov and I. A. Dynnikov, Russ. Math. Surveys, 52, 1057–1116 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. V. Zhiber, V. V. Sokolov, and S. Ya. Startsev, “Nonlinear hyperbolic systems of Liouville type [in Russian],” in: Materials of Intl. Conf. “Tikhonov-100”, Vol. 1 (2006), pp. 1–2.Google Scholar
  16. 16.
    A. M. Guryeva and A. V. Zhiber, Theor. Math. Phys., 138, 338–355 (2004).CrossRefGoogle Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Institute of Mathematics, Ufa Science CenterRASUfaRussia

Personalised recommendations