Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantum corrections to static solutions of the sine-Gordon and Nahm models via a generalized zeta function

  • 49 Accesses

  • 5 Citations

Abstract

We consider one-dimensional Yang-Mills-Nahm and sine-Gordon models in terms of a class of nonlinear Klein-Gordon-Fock equations. We perform a semiclassical quantization of the models using a generalized zeta function and construct a representation of the quantum theory in terms of the diagonal of the Green’s function for the heat equation with an elliptic potential via solutions of the Hermite equation. We formulate an alternative approach based on Baker-Akhiezer functions for the KP equation. We evaluate quantum corrections to the action of the Nahm and sine-Gordon models. We study the fields from the class of elliptic functions. We take extra variables of arbitrary dimensions into account for possible applications of quantized sine-Gordon solitons in solid state physics via the Frenkel-Kontorova model or other models. For the Nahm model, whose field is represented via an elliptic (lemniscate) integral by construction, the Yang-Mills field mass coincides with the correction evaluated as a hyperelliptic integral.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    O. M. Braun, Hu Bambi, and A. Zeltser, Phys. Rev. E, 62, 4235–4245 (2000).

  2. 2.

    S. V. Ketov, Fortschr. Phys., 45, 237–292 (1997); arXiv:hep-th/9611209v3 (1996).

  3. 3.

    W. Nahm, Phys. Lett. B, 90, 413–414 (1980).

  4. 4.

    E. Corrigan, P. R. Wainwright, and S. M. J. Wilson, Comm. Math. Phys., 98, 259–272 (1985).

  5. 5.

    J. A. Tuszyński, J. M. Dixon, and A. M. Grundland, Fortschr. Phys., 42, 301–337 (1994).

  6. 6.

    M. Pawellek, J. Phys. A, 42, 045404 (2009); arXiv:0802.0710v1 [hep-th] (2008).

  7. 7.

    S. Leble, “Quantum corrections to static solutions of Nahm equation and Sin-Gordon models via generalized zeta-function,” arXiv:0806.2679v2 [math-ph] (2008).

  8. 8.

    A. Comtet, A. Bandrauk, and D. K. Campbell, Phys. Lett. B, 150, 159–162 (1985).

  9. 9.

    R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D, 10, 4114–4129 (1974);11, 3424–3450 (1975); L. D. Faddeev and V. E. Korepin, Phys. Rep., 42, 1–87 (1978).

  10. 10.

    R. V. Konoplich, Theor. Math. Phys., 73, 1286–1295 (1987); 78, 315–325 (1989).

  11. 11.

    M. Bordag, A. S. Goldhaber, P. van Nieuwenhuizen, and D. Vassilevich, Phys. Rev. D, 66, 125014 (2002); arXiv:hep-th/0203066v3 (2002).

  12. 12.

    V. A. Fock, Phys. Z, 12, 404–425 (1937).

  13. 13.

    S. Leble, “Nahm equations as an integrable system: Difference Lax pair, gauge-Darboux covariance, chains, and solutions,” in: Selected Problems of Modern Mathematics, Kaliningrad State Univ., Kaliningrad (2005), pp. 97–99.

  14. 14.

    A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1953).

  15. 15.

    M. Adler and J. Moser, Comm. Math. Phys., 61, 1–30 (1978).

  16. 16.

    E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994).

  17. 17.

    A. Seeger, Mat. Sci. and Engrg. A, 370, 50–66 (2004).

  18. 18.

    H. Koizumi, M. Tachibana, K. Kojima, and I. Yonenaga, Phys. B, 401–402, 691–694 (2007).

  19. 19.

    A. Alonso Izquierdo, W. García Fuertes, M. A. González León, and J. Mateos Guilarte, Nucl. Phys. B, 635, 525–557 (2002).

Download references

Author information

Correspondence to S. Leble.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 160, No. 1, pp. 122–132, July, 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leble, S. Quantum corrections to static solutions of the sine-Gordon and Nahm models via a generalized zeta function. Theor Math Phys 160, 976–985 (2009). https://doi.org/10.1007/s11232-009-0088-1

Download citation

Keywords

  • quantum correction
  • sine-Gordon equation
  • Nahm model
  • generalized zeta function
  • elliptic solution
  • Hermite equation