Theoretical and Mathematical Physics

, Volume 160, Issue 1, pp 894–904 | Cite as

Exact solutions of a generalized Boussinesq equation

Article

Abstract

We analyze a generalized Boussinesq equation using the theory of symmetry reductions of partial differential equations. The Lie symmetry group analysis of this equation shows that the equation has only a two-parameter point symmetry group corresponding to traveling-wave solutions. To obtain exact solutions, we use two procedures: a direct method and the G′/G-expansion method. We express the traveling-wave solutions in terms of hyperbolic, trigonometric, and rational functions.

Keywords

partial differential equation symmetry solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Boussinesq, C. R. Acad. Sci. Paris, 72, 755–759 (1871).Google Scholar
  2. 2.
    M. J. Boussinesq, J. Math. Pures Appl., 17, 55–109 (1872).Google Scholar
  3. 3.
    A. M. Samsonov and E. V. Sokurinskaya, “Energy exchange between nonlinear waves in elastic waveguides and external media,” in: Nonlinear Waves in Active Media (J. Engelbrecht, ed.), Springer, Berlin (1989), pp. 99–104.Google Scholar
  4. 4.
    D. Zhengde and G. Boling, J. Partial Differential Equations, 12, 301–312 (1999).MATHMathSciNetGoogle Scholar
  5. 5.
    G. Chen, Y. Wang, and S. Wang, J. Math. Appl., 299, 563–577 (2004).MATHGoogle Scholar
  6. 6.
    L. Yacheng and X. Runzhang, J. Math. Anal. Appl., 338, 1169–1187 (2008).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Zhengde and G. Boling, Acta Math. Sci. B, 20, 322–334 (2000).MATHGoogle Scholar
  8. 8.
    S. Wang and G. Chen, Nonlinear Anal., 64, 159–173 (2006).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    P. A. Clarkson and T. J. Priestley, “Symmetries of a generalised Boussinesq equation,” http://en.scientific commons.org/234544 (1970).
  10. 10.
    P. A. Clarkson, J. Phys. A, 22, 2355–2367 (1989).MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    P. A. Clarkson and M. D. Kruskal, J. Math. Phys., 30, 2201–2213 (1989).MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    P. A. Clarkson and D. K. Ludlow, J. Math. Anal. Appl., 186, 132–155 (1994).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. A. Clarkson, Chaos Solitons Fractals, 5, 2261–2301 (1995).CrossRefMathSciNetGoogle Scholar
  14. 14.
    M. S. Bruzón, M. L. Gandarias, and J. Ramírez, “Similarity reductions of an optical model,” in: Symmetry and Perturbation Theory (G. Gaeta, B. Prinari, S. Rauch-Wojciechowski, and S. Terracini, eds.), World Scientific, Singapore (2005), pp. 59–66.CrossRefGoogle Scholar
  15. 15.
    M. S. Bruzón and M. L. Gandarias, “Applying a new algorithm to derive nonclassical symmetries,” in: Nonlinear Science and Complexity, World Scientific, Hackensack, N. J. (2007), pp. 7–12.CrossRefGoogle Scholar
  16. 16.
    M. S. Bruzón and M. L. Gandarias, Commun. Nonlinear Sci. Numer. Simul., 13, 517–523 (2008).MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    M. S. Bruzón and M. L. Gandarias, Proc. Appl. Math. Mech., 8, 10587–10588 (2009).CrossRefGoogle Scholar
  18. 18.
    M. L. Gandarias and M. S. Bruzon, J. Nonlinear Math. Phys., 5, 8–12 (1998).MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    N. H. Ibragimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983); English transl.: Transformation Groups Applied to Mathematical Physics, Reidel, Dordrecht (1985).MATHGoogle Scholar
  20. 20.
    P. J. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts in Math., Vol. 107), Springer, New York (1993).MATHGoogle Scholar
  21. 21.
    M. Wang, X. Li, and J. Zhang, Phys. Lett. A, 372, 417–423 (2008).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, New York (1965).Google Scholar
  23. 23.
    J. C. Camacho, M. S. Bruzón, J. Ramírez, and M. L. Gandarias, “Local symmetries and exact solutions of a beam equation,” Chaos Solitons Fractals (to appear).Google Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de CádizCádizSpain

Personalised recommendations