Advertisement

Theoretical and Mathematical Physics

, Volume 159, Issue 3, pp 779–786 | Cite as

Nonlocal symmetries and reductions for some ordinary differential equations

  • M. L. GandariasEmail author
Article

Abstract

We derive nonlocal symmetries for ordinary differential equations (ODEs). These symmetries are derived by embedding the ODE in an auxiliary system. Using these symmetries, we find that the order of the ODE can be reduced even if it does not admit point symmetries.

Keywords

conditional symmetry nonlocal symmetry ordinary differential equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. González-López, Phys. Lett. A, 133, 190–194 (1988).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    I. S. Krasil’shchik and A. M. Vinogradov, Acta Appl. Math., 2, 79–96 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. S. Krasil’shchik and A. M. Vinogradov, Acta Appl. Math., 15, 161–209 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. M. Vinogradov and I. S. Krasil’shchik, Sov. Math. Dokl., 29, 337–341 (1984).zbMATHGoogle Scholar
  5. 5.
    A. M. Vinogradov and I. S. Krasil’shchik, Sov. Math. Dokl., 22, 235–239 (1980).zbMATHGoogle Scholar
  6. 6.
    G. W. Bluman and G. J. Reid, IMA J. Appl. Math., 40, 87–94 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. L. Gandarias, E. Medina, and C. Muriel, Nonlinear Anal., 47, 5167–5178 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. L. Gandarias, E. Medina, and C. Muriel, J. Nonlinear Math. Phys., 9(Suppl. 1), 47–58 (2002).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, J. Sov. Math., 55, 1401–1450 (1991).CrossRefGoogle Scholar
  10. 10.
    P. J. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts in Math., Vol. 107), Springer, New York (1986).zbMATHGoogle Scholar
  11. 11.
    C. Muriel and J. L. Romero, IMA J. Appl. Math., 66, 111–125 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    D. C. Ferraioli, J. Phys. A, 40, 5479–5489 (2007).zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    C. Muriel and J. L. Romero, IMA J. Appl. Math., 72, 191–205 (2007).zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    B. Abraham-Shrauner, K. S. Govinder, and P. G. L. Leach, Phys. Lett. A, 203, 169–174 (1995).zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    B. Abraham-Shrauner, IMA J. Appl. Math., 56, 235–252 (1996).zbMATHMathSciNetGoogle Scholar
  16. 16.
    B. Abraham-Shrauner, J. Nonlinear Math. Phys., 9(Suppl. 2), 1–9 (2002).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    A. A. Adam and F. M. Mahomed, IMA J. Appl. Math., 60, 187–198 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    R. M. Edelstein, K. S. Govinder, and F. M. Mahomed, J. Phys. A, 34, 1141–1152 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    C. Géromini, M. R. Feix, and P. G. L. Leach, J. Phys. A, 34, 10109–10117 (2001).CrossRefMathSciNetGoogle Scholar
  20. 20.
    N. H. Ibragimov, J. Math. Anal. Appl., 318, 742–757 (2006).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de CádizCádizSpain

Personalised recommendations