Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectral parameterization for power sums of a quantum supermatrix

Abstract

We obtain a parameterization for power sums of a GL(m|n)-type quantum (super)matrix in terms of its spectral values.

References

  1. 1.

    D. I. Gurevich, P. N. Pyatov, and P. A. Saponov, St. Petersburg Math. J., 17, 119–135 (2006); arXiv:math.QA/0412192v2 (2004).

  2. 2.

    D. I. Gurevich, P. N. Pyatov, and P. A. Saponov, Theor. Math. Phys., 147, 460–485 (2006); arXiv:math.QA/0508506v2 (2005).

  3. 3.

    D. I. Gurevich, P. N. Pyatov, and P. A. Saponov, St. Petersburg Math. J., 20, 213–253 (2009); arXiv:math.QA/0612815v2 (2006).

  4. 4.

    I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon, Oxford (1995).

  5. 5.

    A. P. Isaev, O. V. Ogievetsky, and P. N. Pyatov, J. Phys. A, 32, L115–L121 (1999); arXiv:math.QA/9809170v1 (1998).

  6. 6.

    A. Ram, Proc. London Math. Soc., 75, 99–133 (1997); arXiv:math.RT/9511223v1 (1995).

  7. 7.

    O. Ogievetsky and P. Pyatov, “Lecture on Hecke algebras,” in: Symmetries and Integrable Systems (Proc. Intl. School, Dubna, Russia, June 8–11, 1999, S. Z. Pakulyak, ed.), Joint Inst. Nucl. Res., Dubna (2000), pp. 39–88; Preprint MPIM 2001–40, http://www.mpim-bonn.mpg.de/html/preprints/preprints.html (2001).

  8. 8.

    P. H. Hai, Acta Math. Vietnam., 24, 235–246 (1999).

  9. 9.

    A. Isaev, O. Ogievetsky, and P. Pyatov, Czechoslovak J. Phys., 48, 1369–1374 (1998); arXiv:math.QA/ 9809047v1 (1998).

  10. 10.

    A. Isaev and P. Pyatov, Comm. Math. Phys., DOI: 10.1007/s00220-009-0785-5 (2009); arXiv:0812.2225v1 [math.QA] (2008).

  11. 11.

    T. Umeda, Proc. Amer. Math. Soc., 126, 3169–3175 (1998).

  12. 12.

    O. V. Ogievetsky and P. N. Pyatov, “Orthogonal and symplectic quantum matrix algebras and Cayley-Hamilton theorem for them,” arXiv:math.QA/0511618v1 (2005).

  13. 13.

    D. Gurevich and P. Saponov, “Geometry of non-commutative orbits related to Hecke symmetries,” in: Quantum Groups (Contemp. Math., Vol. 433, P. Etingof, S. Gelaki, and S. Shnider, eds.), Amer. Math. Soc., Providence, R. I. (2007), pp. 209–250; arXiv:math.QA/0411579v1 (2004).

Download references

Author information

Correspondence to D. I. Gurevich.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 159, No. 2, pp. 207–219, May, 2009.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Gurevich, D.I., Pyatov, P.N. & Saponov, P.A. Spectral parameterization for power sums of a quantum supermatrix. Theor Math Phys 159, 587–597 (2009). https://doi.org/10.1007/s11232-009-0048-9

Download citation

Keywords

  • quantum (super)matrix
  • characteristic subalgebra
  • spectral value