Theoretical and Mathematical Physics

, Volume 158, Issue 1, pp 48–60 | Cite as

The method of generalized Cole-Hopf substitutions and new examples of linearizable nonlinear evolution equations

  • V. M. ZhuravlevEmail author


We propose a new approach for constructing nonlinear evolution equations in matrix form that are integrable via substitutions similar to the Cole-Hopf substitution linearizing the Burgers equation. We use this new approach to find new integrable nonlinear evolution equations and their hierarchies.


exactly integrable nonlinear equation Burgers-type equation Cole-Hopf substitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Burgers, The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems, Reidel, Dordrecht (1974).zbMATHGoogle Scholar
  2. 2.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).zbMATHGoogle Scholar
  3. 3.
    C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett., 19, 1095–1097 (1967).zbMATHCrossRefADSGoogle Scholar
  4. 4.
    S. I. Svinolupov, Theor. Math. Phys., 65, 1177–1180 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    N. H. Ibragimov, Groups of Transformations in Mathematical Physics [in Russian], Nauka, Moscow (1983); English transl.: Transformation Groups Applied in Mathematical Physics, Reidel, Dordrecht (1985).Google Scholar
  6. 6.
    A. V. Mikhajlov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, No. 4, 1–63 (1987).zbMATHCrossRefGoogle Scholar
  7. 7.
    V. V. Sokolov, Russ. Math. Surveys, 43, No. 5, 165–204 (1988).zbMATHCrossRefGoogle Scholar
  8. 8.
    S. I. Svinolupov and V. V. Sokolov, Russ. Math. Surveys, 47, No. 3, 127–162 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. I. Svinolupov and V. V. Sokolov, Theor. Math. Phys., 100, 959–962 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    V. E. Adler, A. B. Shabat, and R. I. Yamilov, Theor. Math. Phys., 125, 1603–1661 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Ya. Startsev, Theor. Math. Phys., 116, 1001–1010 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Ya. Startsev, Theor. Math. Phys., 127, 460–470 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?,” in: What is Integrability? (V. E. Zhakharov, ed.), Springer, Berlin (1991), pp. 1–62.Google Scholar
  14. 14.
    A. I. Zenchuk and P. M. Santini, “On the remarkable relations among PDEs integrable by the inverse spectral transform method, by the method of characteristics, and by the Hopf-Cole transformation,” arXiv:0801.3945v1 (2008).Google Scholar
  15. 15.
    P. M. Santini, Inverse Problems, 8, 285–301 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    V. E. Zaharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl., Plenum, New York (1984).Google Scholar
  17. 17.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Acad. Press, London (1982).zbMATHGoogle Scholar
  18. 18.
    V. M. Zhuravlev, JETP, 83, 1235–1245 (1996).ADSMathSciNetGoogle Scholar
  19. 19.
    V. M. Zhuravlev, Nonlinear Waves in Multicomponent Systems with Dispersion and Diffusion [in Russian], Ulyanovsk State Univ. Press, Ulyanovsk (2002).Google Scholar
  20. 20.
    V. M. Zhuravlev and A. V. Nikitin, in: 3rd Kuryumovskii Reading “Synergetics in the Natural Sciences” [in Russian] (Intl. Interdisciplinary Scientific Conf., Tver, 19–22 April 2007), Tver State Univ., Tver (2007), pp. 60–61.Google Scholar
  21. 21.
    V. M. Zhuravlev and A. V. Nikitin, Nonlinear World, 5, 603–611 (2007).CrossRefGoogle Scholar
  22. 22.
    V. M. Zhuravlev and D. A. Zinov’ev, JETP Letters, 87, 266–270 (2008).CrossRefADSGoogle Scholar
  23. 23.
    B. A. Uryukov, Teplofizika i Aeromekhanika, 6, 421–424 (1999).Google Scholar
  24. 24.
    A. Scott, Active and Nonlinear Wave Propagation in Electronics, Wiley, New York (1970).Google Scholar
  25. 25.
    V. M. Zhuravlev, JETP, 102, 515–530 (2006); JETP Lett., 75, 9–14 (2002).CrossRefADSGoogle Scholar
  26. 26.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian] (2nd ed.), Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1953).Google Scholar
  27. 27.
    O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics [in Russian], Nauka, Moscow (1975); English transl., Consultants Bureau, New York (1977).Google Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Ulyanovsk State UniversityUlyanovskRussia

Personalised recommendations