Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Equivalence of commutation relations

  • 45 Accesses


We consider C*-algebras of commutation relations over the fields p, p = 2, 3, 5, …, ∞. We describe all the irreducible separable representations of these algebras. We prove that the algebras are not isomorphic at different p.

This is a preview of subscription content, log in to check access.


  1. 1.

    G. W. Mackey, Duke Math. J., 16, 311–326 (1949).

  2. 2.

    M. Rieffel, Duke Math. J., 39, 745–752 (1972).

  3. 3.

    G. J. Murphy, C*-Algebras and Operator Theory, Acad. Press, Boston, Mass. (1990).

  4. 4.

    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Structure of Topological Groups, Integration Theory, Group Representations (Grundlehren Math. Wiss., Vol. 115), Springer, New York (1979); Abstract Harmonic Analysis, Vol. 2, Structure and Analysis for Compact Groups, Analysis on Locally Compact Abelian Groups (Grundlehren Math. Wiss., Vol. 152), Springer, New York (1970).

  5. 5.

    V. S. Vladimirov, I. V. Volovich, and Ye. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian], Nauka, Moscow (1994); English transl. (Ser. Sov. East Eur. Math., Vol. 1), World Scientific, Singapore (1994).

  6. 6.

    J. Slawny, Comm. Math. Phys., 24, 151–170 (1972).

Download references

Additional information


Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 157, No. 3, pp. 406–412, December, 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zelenov, E.I. Equivalence of commutation relations. Theor Math Phys 157, 1707–1712 (2008).

Download citation


  • commutation relation
  • p-adic topology
  • irreducible representation
  • equivalence of representations