Theoretical and Mathematical Physics

, Volume 157, Issue 3, pp 1646–1654 | Cite as

Cauchy problem on non-globally hyperbolic space-times

  • I. Ya. Aref’eva
  • T. Ishiwatari
  • I. V. Volovich


We consider solutions of the Cauchy problem for hyperbolic equations on non-globally hyperbolic space-times containing closed timelike curves (time machines). We prove that for the wave equation on such space-times, there exists a solution of the Cauchy problem that is discontinuous and in some sense unique for arbitrary initial conditions given on a hypersurface at a time preceding the formation of closed timelike curves. If the hypersurface of initial conditions intersects the region containing closed timelike curves, then the solution of the Cauchy problem exists only for initial conditions satisfying a certain self-consistency requirement.


Cauchy problem non-globally hyperbolic space-time closed timelike curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1988); English transl. prev. ed., Mir, Moscow (1984).zbMATHGoogle Scholar
  2. 2.
    J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover, New York (1953).Google Scholar
  3. 3.
    I. Petrowsky, Sb. Math., 2(44), 815–870 (1937).zbMATHGoogle Scholar
  4. 4.
    J. Leray, Hyperbolic Differential Equations, Inst. Adv. Study, New York (1953).Google Scholar
  5. 5.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge Monographs Math. Phys., Vol. 1), Cambridge Univ. Press, London (1973).zbMATHGoogle Scholar
  6. 6.
    M. Visser, Lorentzian Wormholes: From Einstein to Hawking, Springer, New York (1995).Google Scholar
  7. 7.
    J. R. Gott, Time Travel in Einstein’s Universe: The Physical Possibilities of Travel Through Time, Houghton Mifflin, New York (2001).Google Scholar
  8. 8.
    I. Todorov, “Kurt Goedel and his universe,” arXiv:0709.1387v3 (2007).Google Scholar
  9. 9.
    V. V. Kozlov and I. V. Volovich, Int. J. Geom. Meth. Mod. Phys., 3, 1349–1357 (2006); arXiv:gr-qc/0603111v1 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    J. Friedman et al., Phys. Rev. D, 42, 1915–1930 (1990).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    D. Deutsch, Phys. Rev. D, 44, 3197–3217 (1991).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    H. D. Politzer, Phys. Rev. D, 49, 3981–3989 (1994).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    I. Ya. Aref’eva and I. V. Volovich, Int. J. Geom. Meth. Mod. Phys., 5, 641–651 (2008); arXiv:0710.2696v2 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Mironov, A. Morozov, and T. N. Tomaras, Facta Univer., Ser. Phys., Chem., Technology, 4, 381–404 (2006); arXiv:0710.3395v1 (2007).Google Scholar
  15. 15.
    V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables [in Russian], Nauka, Moscow (1964); English transl., MIT Press, Cambridge, Mass. (1966).Google Scholar

Copyright information

© MAIK/Nauka 2008

Authors and Affiliations

  • I. Ya. Aref’eva
    • 1
  • T. Ishiwatari
    • 1
  • I. V. Volovich
    • 1
  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations