Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Hamiltonian formalism in the presence of higher derivatives

  • 118 Accesses

  • 9 Citations

Abstract

We briefly review basic formulas of the Hamiltonian formalism in classical mechanics in the case where the Lagrangian contains N time derivatives of n coordinate variables. For nonlocal models, N = ∞.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. Fradkin and A. Tseytlin, Nucl. Phys. B, 261, 1–27 (1985); E. Witten, Nucl. Phys. B, 268, 253–294 (1986); W. Siegel, Introduction to String Field Theory (Adv. Ser. Math. Phys., Vol. 8), World Scientific, Teaneck, N. J. (1988).

  2. 2.

    M. Reuter and F. Saueressig, “Functional renormalization group equations, asymptotic safety, and quantum Einstein gravity,“ arXiv:0708.1317v1 (2007).

  3. 3.

    A. Garrett Lisi, “An exeptionally simple theory of everything,” arXiv:0711.0770v1 (2007).

  4. 4.

    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B, 429, 263–272 (1998); arXiv:hep-ph/9803315v1 (1998); Phys. Today, 55, No. 2, 35–40 (2002); G. Landsberg, “Collider searches for extra dimensions,” arXiv: hep-ex/0412028v2 (2004); A. Mironov, A. Morozov, and T. Tomaras, “Can Centauros or Chirons be the first observations of evaporating mini black holes?” arXiv:hep-ph/0311318v2 (2003); Facta Univ. Ser. Phys. Chem. Tech., 4, 381–404 (2006); arXiv:0710.3395v1 (2007); I. Ya. Aref’eva and I. V. Volovich, Int. J. Geom. Meth. Mod. Phys., 5, 641–651 (2008); arXiv:0710.2696v2 (2007).

  5. 5.

    B. Kosyakov, Introduction to the Classical Theory of Particles and Fields, Springer, Berlin (2007); D. V. Gal’tsov, Phys. Rev. D, 66, 025016 (2002); arXiv:hep-th/0112110v1 (2001); P. O. Kazinski, S. L. Lyakhovich, and A. A. Sharapov, Phys. Rev. D, 66, 025017 (2002); arXiv:hep-th/0201046v3 (2002); Yu. Yaremko, SIGMA, 0501, 012 (2005); arXiv:math-ph/0511075v1 (2005); P. O. Kazinskii, “Effective dynamics of singular sources in classical field theory,” Candidate dissertation, Tomsk State Univ., Tomsk (2007); A. D. Mironov and A. Yu. Morozov, “The problem of radiation friction beyond four and six dimensions,” arXiv:0710.5676v1 (2007); A. D. Mironov and A. Yu. Morozov, JETP Lett., 85, 6–11 (2007); arXiv:hep-ph/0612074v1 (2006); Theor. Math. Phys., 156, 1209–1217 (2008); arXiv:hep-th/0703097v1 (2007); D. Galakhov, JETP Lett., 87, 452–458 (2008); arXiv:0710.5688v3 (2007).

  6. 6.

    A. Slavnov, Nucl. Phys. B, 97, 155–164 (1975); A. B. Pimenov, E. S. Shevtsova, A. A. Soloshenko, and K. V. Stepanyantz, “Higher derivative regularization and quantum corrections in N=1 supersymmetric theories,” arXiv:0712.1721v2 (2007).

  7. 7.

    R. Woodard, Phys. Rev. A, 62, 052105 (2000); arXiv:hep-th/0006207v2 (2000).

  8. 8.

    K. Bering, “A note on non-locality and Ostrogradski’s construction,” arXiv:hep-th/0007192v1 (2000).

  9. 9.

    R. Miron, D. Hrimiue, H. Shimada, and S. V. Sabau, The Geometry of Hamilton and Lagrange Spaces (Fund. Theories Phys., Vol. 118), Kluwer, Dordrecht (2001).

  10. 10.

    S. Hawking and T. Hertog, Phys. Rev. D, 65, 103515 (2002); arXiv:hep-th/0107088v2 (2001).

  11. 11.

    T.-C. Cheng, P.-M. Ho, and M.-C. Yeh, Phys. Rev. D, 66, 085015 (2002); arXiv:hep-th/0206077v2 (2002).

  12. 12.

    J. Gomis, K. Kamimura, and T. Ramirez, Nucl. Phys. B, 696, 263–291 (2004); arXiv:hep-th/0311184v3 (2003).

  13. 13.

    A. Smilga, Phys. Lett. B, 632, 433–438 (2006); arXiv:hep-th/0503213v1 (2005); “6D superconformal theory as the theory of everything,” arXiv:hep-th/0509022v1 (2005).

  14. 14.

    M. S. Plyushchay, EJTP, 3, No. 10, 17–31 (2006); arXiv:math-ph/0604022v4 (2006).

  15. 15.

    I. Cortese and J. A. Garcia, Phys. Lett. A, 358, 327–333 (2006); arXiv:hep-th/0605156v1 (2006); Int. J. Geom. Meth. Mod. Phys., 4, 789–805 (2007); arXiv:hep-th/0703205v1 (2007).

  16. 16.

    S. L. Lyakhovich and A. A. Sharapov, JHEP, 0701, 047 (2007); arXiv:hep-th/0612086v2 (2006).

  17. 17.

    K. Bolonek and P. Kosi’nski, J. Phys. A, 40, 11561–11567 (2007); arXiv:quant-ph/0612091v1 (2006).

  18. 18.

    C. S. Acatrinei, J. Phys. A, 40, F929–F933 (2007); arXiv:0708.4351v1 (2007).

  19. 19.

    K. Andrzejewski, J. Gonera, and P. Maslanka, “A note on the Hamiltonian formalism for higher-derivative theories,” arXiv:0710.2976v1 (2007).

  20. 20.

    M. V. Ostrogradskii, Complete Collected Works [in Russian], Vol. 2, Akad. Nauk Ukrain. SSR, Kiev (1961).

  21. 21.

    E. T. Wittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, Cambridge Univ. Press, New York (1988).

  22. 22.

    A. Pais and G. Uhlenbeck, Phys. Rev., 79, 145–165 (1950).

  23. 23.

    P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Grad. Sch. Sci. Monographs Series, Vol. 2), Belfer Grad. Sch. Sci., New York (1967).

  24. 24.

    A. Slavnov, Nucl. Phys. B, 31, 301–315 (1971).

  25. 25.

    A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1978); English transl.: L. D. Faddeev and A. A. Slavnov Gauge Fields: Introduction to Quantum Theory (Front. Phys., Vol. 83), Benjamin, Reading, Mass. (1990).

  26. 26.

    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications [in Russian], Vol. 2, The Geometry and Topology of Manifolds, URSS, Moscow (2001); English transl.: B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry — Methods and Applications: Part II. The Geometry and Topology of Manifolds (Grad. Texts Math., Vol. 93), 1991, Springer.

  27. 27.

    D. M. Gitman and I. V. Tyutin, Canonical Quantization of Fields with Constraints [in Russian], Nauka, Moscow (1986); English transl.: Quantization of Fields with Constraints, Springer, Berlin (1990).

  28. 28.

    D. Eliezer and R. Woodard, Nucl. Phys. B, 325, 389–469 (1989).

  29. 29.

    M. Plyushchay, Modern Phys. Lett. A, 4, 837–847 (1989).

  30. 30.

    J. M. Pons, Lett. Math. Phys., 17, 181–189 (1989).

  31. 31.

    J. Z. Simon, Phys. Rev. D, 41, 3720–3733 (1990).

  32. 32.

    M. Kreuzer, Class. Q. Grav., 7, 1303–1317 (1990).

  33. 33.

    M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, N. J. (1992).

  34. 34.

    J. Govaerts and M. S. Rashid, “The Hamiltonian formulation of higher order dynamical systems,” arXiv:hepth/ 9403009v2 (1994).

  35. 35.

    J. Llosa and J. Vives, J. Math. Phys., 35, 2856–2877 (1994).

  36. 36.

    H.-J. Schmidt, Phys. Rev. D, 49, 6354–6366 (1994); Erratum, 54, 7906 (1996); arXiv:gr-qc/9404038v2 (1994).

  37. 37.

    T. Nakamura and S. Hamamoto, Progr. Theoret. Phys., 95, 469–484 (1996); arXiv:hep-th/9511219v1 (1995).

  38. 38.

    A. Yu. Morozov, Sov. Phys. Usp., 29, 993–1039 (1986); A. Gorodentsev and A. Losev, Lectures at schools in Dombai and Dubna (2004); D. Krotov, A. Losev, and A. Gorodentsev, “Quantum field theory as effective BV theory from Chern-Simons,” arXiv:hep-th/0603201v3 (2006); P. Mnev, “Notes on simplicial BF theory,” arXiv:hep-th/0610326v3 (2006).

  39. 39.

    V. V. Dolotin, A. Yu. Morozov, and Sh. R. Shakirov, Phys. Lett. B, 651, 71–73 (2007); arXiv:0704.2884v3 (2007); Theor. Math. Phys., 156, 965–995 (2008); arXiv:0704.2609v5 (2007).

  40. 40.

    I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, Mass. (1994); V. Dolotin and A. Morozov, Introduction to Non-Linear Algebra, World Scientific, Hackensack, N. J. (2007); arXiv:hep-th/0609022v4 (2006).

  41. 41.

    D. Fairlie, J. Govaerts, and A. Morozov, Nucl. Phys. B, 373, 214–232 (1992); arXiv:hep-th/9110022v1 (1991).

  42. 42.

    V. Dolotin and A. Stoyanovskii, “Talks at ITEP seminars,” (2006–2007).

  43. 43.

    P. Dunin-Barkowski and A. Sleptsov, “Geometric Hamiltonian formalism for reparametrization-invariant theories with higher derivatives,” Theor. Math. Phys. (to appear); arXiv:0801.4293v2 (2008).

  44. 44.

    L. D. Landau and E. M. Lifshits, Mechanics [in Russian] (Vol. 1 of Course of Theoretical Physics), Nauka, Moscow (1957); English transl., Pergamon, Oxford (1960).

  45. 45.

    A. Yu. Morozov, Sov. Phys. Uspekhi, 37, 1–55 (1994); arXiv:hep-th/9303139v2 (1993); “Matrix models in integrable systems,” arXiv:hep-th/9502091v1 (1995).

Download references

Author information

Correspondence to A. Yu. Morozov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 157, No. 2, pp. 208–216, November, 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morozov, A.Y. Hamiltonian formalism in the presence of higher derivatives. Theor Math Phys 157, 1542–1549 (2008). https://doi.org/10.1007/s11232-008-0128-2

Download citation

Keywords

  • higher-derivative theory
  • Hamiltonian mechanics
  • reparameterization invariance