Advertisement

Theoretical and Mathematical Physics

, Volume 157, Issue 1, pp 1383–1398 | Cite as

One-loop effective action in the \( \mathcal{N} \)=2 supersymmetric massive Yang-Mills field theory

  • I. L. BuchbinderEmail author
  • N. G. Pletnev
Article

Abstract

We consider the \( \mathcal{N} \)=2 supersymmetric massive Yang-Mills field theory formulated in the \( \mathcal{N} \)=2 harmonic superspace. We present various gauge-invariant forms of writing the mass term in the action (in particular, using the Stueckelberg superfield), which result in dual formulations of the theory. We develop a gaugeinvariant and explicitly supersymmetric scheme of the loop expansion of the superfield effective action beyond the mass shell. In the framework of this scheme, we calculate gauge-invariant and explicitly \( \mathcal{N} \)=2 supersymmetric one-loop counterterms including new counterterms depending on the Stueckelberg superfield. We analyze the component structure of one of these counterterms.

Keywords

supersymmetry quantum field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Slavnov and L. D. Faddeev, Theor. Math. Phys., 3, 312–316 (1971); A. I. Vainshtein and I. B. Khriplovich, Sov. J. Nucl. Phys., 13, 111–123 (1971); M. Veltman, Nucl. Phys. B, 7, 637–650 (1968); G.’ t Hooft, Nucl. Phys. B, 33, 173–199 (1971).CrossRefGoogle Scholar
  2. 2.
    T. C. G. Stueckelberg, Helv. Phys. Acta, 11, 225–244 (1938); V. I. Ogievetskii and I. V. Polubarinov, Sov. Phys. JETP, 41, 247–255 (1961).Google Scholar
  3. 3.
    H. Ruegg and M. Ruiz-Altaba, Internat. J. Mod. Phys. A, 19, 3265–3347 (2004).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    N. Dragon, T. Hurth, and P. van Nieuwenhuizen, Nucl. Phys. B Proc. Suppl., 56, 318–321 (1997); B. Körs and P. Nath, JHEP, 0507, 069 (2005); D. Bettinelli, R. Ferrari, and A. Quadri, Rev. Phys. D, 77, 045021 (2008); arXiv:0705.2339v3 (2007).CrossRefADSGoogle Scholar
  5. 5.
    D. Z. Freedman and P. K. Townsend, Nucl. Phys. B, 177, 282–296 (1981).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. A. Tseytlin, Sov. J. Nucl. Phys, 40, 1363 (1984); E. S. Fradkin and A. A. Tseytlin, Ann. Phys., 162, 31–48 (1985); A. A. Slavnov and S. A. Frolov, Theor. Math. Phys., 75, 470–477 (1988); I. L. Buchbinder and S. M. Kuzenko, Nucl. Phys. B, 308, 162–190 (1988).MathSciNetGoogle Scholar
  7. 7.
    M. Graña, Phys. Rep., 423, 91–158 (2006); M. R. Douglas and S. Kachru, Rev. Modern Phys., 79, 733–796 (2007).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace, IOP, Bristol (1998).zbMATHGoogle Scholar
  9. 9.
    A. Galperin et al., Class. Q. Grav., 1, 469–498 (1984); Class. Q. Grav., 2, 601–616, 617–630 (1985); B. M. Zupnik, Theor. Math. Phys., 69, 1101–1105 (1986); Phys. Lett. B, 183, 175–176 (1987).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace, Campridge Univ. Press, Cambridge (2001).zbMATHGoogle Scholar
  11. 11.
    S. M. Kuzenko, JHEP, 0501, 041 (2005).Google Scholar
  12. 12.
    T. Kunimasa and T. Gotō, Progr. Theoret. Phys., 37, 452–464 (1967); I. Ya. Aref’eva and A. A. Slavnov, Theor. Math. Phys., 44, 563–572 (1980).CrossRefADSGoogle Scholar
  13. 13.
    G. A. Khelashvili and V. I. Ogievetsky, Modern Phys. Lett. A, 6, 2143–2154 (1991).CrossRefADSGoogle Scholar
  14. 14.
    I. L. Buchbinder, E. I. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, Phys. Lett. B, 417, 61–71 (1998); I. L. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, Phys. Lett. B, 433, 335–345 (1998); E. I. Buchbinder et al., Phys. Part. Nucl., 32, 641–674 (2001).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    K. Shizuya, Nucl. Phys. B, 121, 125–140 (1977).CrossRefADSGoogle Scholar
  16. 16.
    Yu. N. Kafiev, Nucl. Phys. B, 201, 341–351 (1982).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    A. A. Slavnov and L. D. Faddeev, Theor. Math. Phys., 8, 843–850 (1971); D. V. Volkov, Phys. Part. Nucl., 4, 1–17 (1973); V. N. Pervushin, Theor. Math. Phys., 22, 203–209 (1975); D. I. Kazakov, V. N. Pervushin, and S. V. Pushkin, Theor. Math. Phys., 31, 389–394 (1977); D. I. Kazakov, V. N. Pervushin, and S. V. Pushkin, J. Phys. A, 11, 2093–2105 (1978).CrossRefGoogle Scholar
  18. 18.
    I. L. Buchbinder et al., Phys.Lett. B, 412, 309–319 (1997); S. Eremin and E. Ivanov, Modern Phys. Lett. A, 15, 1859–1877 (2000); I. L. Buchbinder and S. M. Kuzenko, Modern Phys. Lett. A, 13, 1623–1635 (1998); E. I. Buchbinder, I. L. Buchbinder, and S. M. Kuzenko, Phys. Lett. B, 446, 216–223 (1999); I. L. Buchbinder and I. B. Samsonov, Modern Phys. Lett. A, 14, 2537–2544 (1999); I. L. Buchbinder, S. M. Kuzenko, and A. A. Tseytlin, Phys. Rev. D, 62, 045001 (2000); I. L. Buchbinder, A. Yu. Petrov, and A. A. Tseytlin, Nucl. Phys. B, 621, 179–207 (2002); I. L. Buchbinder, E. A. Ivanov, and A. Yu. Petrov, Nucl. Phys. B, 653, 64–84 (2003); I. L. Buchbinder and N. G. Pletnev, JHEP, 0509, 073 (2005); 0704, 096 (2007).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    F. V. Gubarev, L. Stodolsky, and V. I. Zakharov, Phys. Rev. Lett., 86, 2220–2222 (2001); F. V. Gubarev and V. I. Zakharov, Phys. Lett. B, 501, 28–36 (2001).CrossRefADSGoogle Scholar
  20. 20.
    M. A. L. Capri et al., Phys. Rev. D, 72, 105016 (2005).Google Scholar
  21. 21.
    G. Cvetič and R. Kögerler, Nucl. Phys. B, 363, 401–424 (1991); Z. Phys. C, 48, 109–119 (1990); G. Cvetič, C. Grosse-Knetter, and R. Kögerler, Internat. J. Mod. Phys. A, 9, 5313–5358 (1994).CrossRefADSGoogle Scholar
  22. 22.
    S. Weinberg, The Quantum Theory of Fields, Vol. 2, Modern Applications, Cambridge Univ. Press, Cambridge (2005); J. Gomis and S. Weinberg, Nucl. Phys. B, 469, 473–487 (1996).Google Scholar
  23. 23.
    G. G. Volkov and A. A. Maslikov, Phys. Atomic Nuclei, 57, 331–339 (1994).ADSGoogle Scholar
  24. 24.
    S. Ferrara et al., Nucl. Phys. B, 704, 154–180 (2005).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2008

Authors and Affiliations

  1. 1.Tomsk State Pedagogical UniversityTomskRussia
  2. 2.Mathematical InstituteSiberian Branch, RASNovosibirskRussia

Personalised recommendations