Advertisement

Theoretical and Mathematical Physics

, Volume 155, Issue 2, pp 802–811 | Cite as

Symmetries of nonlinear hyperbolic systems of the Toda chain type

  • V. V. Sokolov
  • S. Ya. Startsev
Article

Abstract

We consider hyperbolic systems of equations that have full sets of integrals along both characteristics. The best known example of models of this type is given by two-dimensional open Toda chains. For systems that have integrals, we construct a differential operator that takes integrals into symmetries. For systems of the chosen type, this proves the existence of higher symmetries dependent on arbitrary functions.

Keywords

Liouville equation Toda chain integral higher symmetry hyperbolic system of partial differential equations Noether theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Zhiber and A. B. Shabat, Dokl. Akad. Nauk SSSR, 247, 1103–1107 (1979).MathSciNetGoogle Scholar
  2. 2.
    A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 56, No. 1, 61–101 (2001).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    F. G. Tricomi, Lezioni sulle equazioni a derivate parziali, Editrice Gheroni, Torino (1954).MATHGoogle Scholar
  4. 4.
    A. N. Leznov, and M. V. Saveliev, Lett. Math. Phys., 3, 489–494 (1979).MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    A. N. Leznov, Theor. Math. Phys., 42, 225–229 (1980).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. B. Shabat and R. I. Yamilov, “Exponential systems of type I and Cartan matrices,” Preprint, Ufa (1981).Google Scholar
  7. 7.
    A. B. Shabat, Phys. Lett. A, 200, 121–133 (1995).MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A. N. Leznov, V. G. Smirnov and A. B. Shabat, Theor. Math. Phys., 51, 322–330 (1982).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. N. Leznov and A. B. Shabat, “Truncation conditions for permutation theory series,” in: Integrable Systems [in Russian], Bashkir Branch, Acad. Sci. USSR, Ufa (1982), pp. 34–45.Google Scholar
  10. 10.
    D. K. Demskoi and S. Ya. Startsev, J. Math. Sci., 136, 4378–4384 (2006).CrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Ya. Startsev, Fundam. Prikl. Mat., 12, No. 7, 251–262 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovka, Moscow OblastRussia
  2. 2.Institute of Mathematics and Computing CenterRASUfaRussia

Personalised recommendations