Advertisement

Theoretical and Mathematical Physics

, Volume 155, Issue 1, pp 503–511 | Cite as

The null energy condition and cosmology

  • I. Ya. Aref’eva
  • I. V. Volovich
Article

Abstract

Field theories that violate the null energy condition (NEC) are of interest both for the solution of the cosmological singularity problem and for models of cosmological dark energy with the equation of state parameter w < −1. We consider two recently proposed models that violate the NEC. The ghost condensate model requires higher-derivative terms in the action, and this leads to a heavy ghost field and energy unbounded from below. We estimate the rates of particle decay and discuss possible mass limitations to protect the stability of matter in the ghost condensate model. The nonlocal stringy model that arises from a cubic string field theory and exhibits a phantom behavior also leads to energy unbounded from below. In this case, the energy spectrum is continuous, and there are no particle-like excitations. This model admits a natural UV completion because it comes from superstring theory.

Keywords

cosmology string D-brane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Univ. Press, London (1973).MATHGoogle Scholar
  2. 2.
    M. Gasperini and G. Veneziano, Phys. Rep., 373, 1–212 (2003); arXiv:hep-th/0207130v1 (2002).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D, 68, 023509 (2003); arXiv:astro-ph/0301273v2 (2003).Google Scholar
  4. 4.
    J. M. Cline, S. Jeon, and G. D. Moore, Phys. Rev. D, 70, 043543 (2004); arXiv:hep-ph/0311312v4 (2003).Google Scholar
  5. 5.
    S. D. H. Hsu, A. Jenkins, and M. B. Wise, Phys. Lett. B, 597, 270–274 (2004); arXiv:astro-ph/0406043v3 (2004).CrossRefADSGoogle Scholar
  6. 6.
    B. McInnes, Nucl. Phys. B, 718, 55–82 (2005); arXiv:hep-th/0502209v2 (2005).MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    R. V. Buniy, S. D. H. Hsu, and B. M. Murray, Phys. Rev. D, 74, 063518 (2006); arXiv:hep-th/0606091v1 (2006).Google Scholar
  8. 8.
    E. J. Copeland, M. Sami, and Sh. Tsujikawa, Internat. J. Mod. Phys. D, 15, 1753–1935 (2006); arXiv:hep-th/0603057v3 (2006).MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    T. Padmanabhan, “Dark energy: Mystery of the millennium,” in: Albert Einstein Century International Conference (AIP Conf. Proc., Vol. 861), Amer. Inst. Phys., Melville, N.Y. (2006), pp. 179–196; arXiv:astro-ph/0603114v4 (2006).Google Scholar
  10. 10.
    M. Kaplinghat and S. Bridle, Phys. Rev. D, 71, 123003 (2005); arXiv:astro-ph/0312430v2 (2003).CrossRefADSGoogle Scholar
  11. 11.
    G. Veneziano, JCAP, 0403, 004 (2004); arXiv:hep-th/0312182v1 (2003).ADSGoogle Scholar
  12. 12.
    S. Dubovsky, T. Gregoire, A. Nicolis, and R. Rattazzi, JHEP, 0603, 025 (2006); arXiv:hep-th/0512260v2 (2005).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S. Mukohyama, JHEP, 0405, 074 (2004); arXiv:hep-th/0312099v1 (2003).CrossRefMathSciNetGoogle Scholar
  14. 14.
    F. Piazza and S. Tsujikawa, JCAP, 0407, 004 (2004); arXiv:hep-th/0405054v2 (2004).ADSGoogle Scholar
  15. 15.
    A. Adams et al., JHEP, 0610, 014 (2006); arXiv:hep-th/0602178v2 (2006).CrossRefADSGoogle Scholar
  16. 16.
    P. Creminelli, M. A. Luty, A. Nicolis, and L. Senatore, JHEP, 0612, 080 (2006); arXiv:hep-th/0606090v2 (2006).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    I. Ya. Aref’eva, “Nonlocal string tachyon as a model for cosmological dark energy,” in: p-Adic Mathematical Physics (AIP Conf. Proc., Vol. 826), Amer. Inst. Phys., Melville, N. Y. (2006), pp. 301–311; arXiv:astro-ph/0410443v2 (2004).Google Scholar
  18. 18.
    I. Ya. Aref’eva and L. V. Joukovskaya, JHEP, 0510, 087 (2005); arXiv:hep-th/0504200v2 (2005).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    G. Calcagni, JHEP, 0605, 012 (2006); arXiv:hep-th/0512259v4 (2005).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    I. Ya. Aref’eva and A. S. Koshelev, JHEP, 0702, 041 (2007); arXiv:hep-th/0605085v3 (2006); I. Ya. Aref’eva, “D-brane as a model for cosmological dark energy,” in: Contents and Structures of the Universe (Proc. 41st Rencontres de Moriond, La Thuile, Italy, March 18–25, 2006, C. Magneville, R. Ansari, J. Dumarchez, and J. T. T. Van, eds.), NXB The Gioi, Hanoi (2006), pp. 131–135.CrossRefADSGoogle Scholar
  21. 21.
    I. Ya. Aref’eva, P. B. Medvedev, and A. P. Zubarev, Phys. Lett. B, 240, 356–362 (1990); Nucl. Phys. B, 341, 464–498 (1990); C. R. Preitschopf, C. B. Thorn, and S. A. Yost, Nucl. Phys. B, 337, 363–433 (1990); I. Ya. Arefeva, D. M. Belov, A. S. Koshelev, and P. B. Medvedev, Nucl. Phys. B, 638, 3–20 (2002); arXiv:hep-th/0011117v3 (2000).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    I. Ya. Aref’eva, L. V. Joukovskaya, and A. S. Koshelev, JHEP, 0309, 012 (2003); arXiv:hep-th/0301137v2 (2003); Ya. I. Volovich, J. Phys. A, 36, 8685–8701 (2003); arXiv:math-ph/0301028v1 (2003).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    A. Sen, Internat. J. Mod. Phys. A, 20, 5513–5656 (2005); arXiv:hep-th/0410103v2 (2004).MATHCrossRefADSGoogle Scholar
  24. 24.
    K. Ohmori, “A review on tachyon condensation in open string field theories,” arXiv:hep-th/0102085v4 (2001); I. Ya. Aref’eva et al., “Noncommutative field theories and (super)string field theories,” arXiv:hep-th/0111208v2 (2001); W. Taylor, “Lectures on D-branes, tachyon condensation, and string field theory,” arXiv:hep-th/0301094v1 (2003).Google Scholar
  25. 25.
    V. A. Rubakov, Theor. Math. Phys., 149, 1651–1664 (2006); arXiv:hep-th/0604153v2 (2006).CrossRefGoogle Scholar
  26. 26.
    R. Gannouji, D. Polarski, A. Ranquet, and A. A. Starobinsky, JCAP, 0609, 016 (2006); arXiv:astro-ph/0606287v2 (2006).ADSGoogle Scholar
  27. 27.
    R. Lazkoz, R. Maartens, and E. Majerotto, Phys. Rev. D, 74, 083510 (2006); arXiv:astro-ph/0605701v2 (2006).Google Scholar
  28. 28.
    I. P. Neupane, “Towards inflation and accelerating cosmologies in string-generated gravity models,” arXiv:hep-th/0605265v1 (2006).Google Scholar
  29. 29.
    S. Nojiri, S. D. Odintsov, and M. Sami, Phys. Rev. D, 74, 046004 (2006); arXiv:hep-th/0605039v3 (2006).Google Scholar
  30. 30.
    M. Ostrogradski, Memoires sur les equations differentielles relatives au probleme des isoperimetres (Mem. Ac. St. Petersburg, Vol. VI 4) (1850).Google Scholar
  31. 31.
    T. Nakamura and S. Hamamoto, Progr. Theoret. Phys., 95, 469–484 (1996); arXiv:hep-th/9511219v1 (1995).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    A. Pais and G. E. Uhlenbeck, Phys. Rev., 79, 145–165 (1950).MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    I. V. Volovich, “Gauge invariance in the axiomatic approach,” Dissertation, Moscow State Univ., Moscow (1969).Google Scholar
  34. 34.
    V. S. Vladimirov and Ya. I. Volovich, Theor. Math. Phys., 138, 297–309 (2004); arXiv:math-ph/0306018v1 (2003); V. S. Vladimirov, Izv. RAN. Ser. Mat., 69, 487–512 (2005); arXiv:math-ph/0507018v1 (2005); L. V. Zhukovskaya, Theor. Math. Phys., 146, 335–342 (2006); D. V. Prokhorenko, “On some nonlinear integral equation in the (super)string theory,” arXiv:math-ph/0611068v1 (2006).CrossRefMathSciNetGoogle Scholar
  35. 35.
    I. V. Volovich, Class. Q. Grav., 4, L83–L87 (1987); I. V. Volovich, Theor. Math. Phys., 71, 574–576 (1987).CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    L. Brekke, P. G. O. Freund, M. Olson, and E. Witten, Nucl. Phys. B, 302, 365–402 (1988); P. H. Frampton and Ya. Okada, Phys. Rev. D, 37, 3077–3079 (1988).CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian], Nauka, Moscow (1994); English transl.: (Ser. Soviet and East Eur. Math., Vol. 1), World Scientific, Singapore (1994).Google Scholar
  38. 38.
    I. Ya. Aref’eva, L. V. Joukovskaya, and S. Yu. Vernov, JHEP, 0707, 087 (2007); arXiv:hep-th/0701184v4 (2007).CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    I. V. Volovich and V. V. Kozlov, Dokl. Math., 73, 441–444 (2006); V. V. Kozlov and I. V. Volovich, Int. J. Geom. Meth. Mod. Phys., 3, 1349–1357 (2006); arXiv:gr-qc/0603111v1 (2006).CrossRefGoogle Scholar
  40. 40.
    I. Ya. Aref’eva, S. Yu. Vernov, and A. S. Koshelev, Theor. Math. Phys., 148, 895–909 (2006); arXiv:astro-ph/0412619v5 (2004); I. Ya. Aref’eva, A. S. Koshelev, and S. Yu. Vernov, Phys. Lett. B, 628, 1–10 (2005); arXiv:astro-ph/0505605v2 (2005); Phys. Rev. D, 72, 064017 (2005); arXiv:astro-ph/0507067v2 (2005).CrossRefMathSciNetGoogle Scholar
  41. 41.
    M. P. Dabrowski, C. Kiefer, and B. Sandhöfer, Phys. Rev. D, 74, 044022 (2006); arXiv:hep-th/0605229v1 (2006).Google Scholar
  42. 42.
    E. O. Kahya and V. K. Onemli, Phys. Rev. D, 76, 043512 (2007); arXiv:gr-qc/0612026v3 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations