Theoretical and Mathematical Physics

, Volume 154, Issue 3, pp 473–494 | Cite as

Expectation values of scaling fields in ZN Ising models

Abstract

We compute exact vacuum expectation values of physically relevant scaling fields in the perturbed ZN parafermionic models. Our algebraic method is based on analyzing vertex operators in the corresponding off-critical lattice model. The results coincide with the expressions derived by perturbed conformal field theory methods.

Keywords

integrable model conformal field theory vacuum expectation value parafermionic symmetry vertex operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Fateev, V. V. Postnikov, and Y. P. Pugai, JETP Lett., 83, 172–178 (2006).CrossRefADSGoogle Scholar
  2. 2.
    A. B. Zamolodchikov and V. A. Fateev, JETP, 62, 215–225 (1985).MathSciNetGoogle Scholar
  3. 3.
    A. B. Zamolodchikov and V. A. Fateev, JETP, 90, 1061–1066 (1986).Google Scholar
  4. 4.
    A. B. Zamolodchikov, “Integrable field theory from conformal field theory,” in: Integrable Systems in Quantum Field Theory and Statistical Mechanics (Adv. Stud. Pure Math., Vol. 19, M. Jimbo, ed.), Acad. Press, Boston, Mass. (1989), pp. 641–674.Google Scholar
  5. 5.
    V. A. Fateev, Internat. J. Mod. Phys. A, 6, 2109–2132 (1991).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    R. Köberle and J. A. Swieca, Phys. Lett. B, 86, 209–210 (1979).CrossRefADSGoogle Scholar
  7. 7.
    Al. B. Zamolodchikov, Nucl. Phys. B, 348, 619–641 (1991).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, World Scientific, Singapore (1992).MATHGoogle Scholar
  9. 9.
    Al. B. Zamolodchikov, Internat. J. Mod. Phys. A, 10, 1125–1150 (1995).CrossRefADSGoogle Scholar
  10. 10.
    V. A. Fateev, Phys. Lett. B, 324, 45–51 (1994).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B, 493, 571–587 (1997); V. Fateev, S. Lukyanov, A. Zamolodchikov, and A. Zamolodchikov, Nucl. Phys. B, 516, 652–674 (1998).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984).MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    V. A. Fateev, “Normalization factors, reflection amplitudes, and integrable systems,” arXiv:hep-th/0103014v2 (2001).Google Scholar
  14. 14.
    V. A. Fateev, Modern Phys. Lett. A, 15, 259–270 (2000).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    V. Fateev et al., Nucl. Phys. B, 540, 587–609 (1999); P. Baseilhac and M. Stanishkov, Phys. Lett. B, 554, 217–222 (2003); arXiv:hep-th/0212342v1 (2002); A. B. Zamolodchikov, “Expectation value of composite field \(T\bar T\) in two-dimensional quantum field theory,” arXiv:hep-th/0401146v1 (2004); G. Delfino and G. Niccoli, J. Stat. Mech., 0504, P004 (2005); arXiv:hep-th/0501173v1 (2005).MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    G. E. Andrews, R. J. Baxter, and P. J. Forrester, J. Statist. Phys., 35, 193–266 (1984).MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    B. Davies et al., Comm. Math. Phys., 151, 89–153 (1993).MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    S. Lukyanov, Comm. Math. Phys., 167, 183–226 (1995); Modern Phys. Lett. A, 12, 2543–2550 (1997); Phys. Lett. B, 408, 192–200 (1997).MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    S. Lukyanov and Y. Pugai, JETP, 82, 1021–1045 (1996); Nucl. Phys. B, 473, 631–658 (1996).ADSGoogle Scholar
  20. 20.
    A. Matsuo, Comm. Math. Phys., 160, 33–48 (1994).MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    H. Konno, Comm. Math. Phys., 195, 373–403 (1998).MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. Jimbo et al., J. Statist. Phys., 102, 883–921 (2001).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B, 240, 312–348 (1984); Nucl. Phys. B, 251, 691–734 (1985).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    V. V. Bazhanov and N. Yu. Reshetikhin, Progr. Theoret. Phys. (Suppl. No. 102), 301–318 (1990).Google Scholar
  25. 25.
    F. A. Smirnov, Comm. Math. Phys., 132, 415–439 (1990); A. N. Kirillov and F. A. Smirnov, “Local fields in scaling field theory, connected with the Potts three-position model [in Russian],” Preprint No. ITF-88-73R, Inst. Theor. Phys., Kiev (1988).MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    H. Babujian, A. Foerster, and M. Karowski, Nucl. Phys. B, 736, 169–198 (2006); arXiv:hep-th/0510062v2 (2005).MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Y. Pugai, JETP Letters, 79, 457–463 (2004).CrossRefADSGoogle Scholar
  28. 28.
    A. B. Zamolodchikov, Theor. Math. Phys., 65, 1205–1213 (1985); V. Fateev and S. Lukyanov, Internat. J. Mod. Phys. A, 3, 507–520 (1988).CrossRefMathSciNetGoogle Scholar
  29. 29.
    D. Nemeshansky, Phys. Lett. B, 224, 121–124 (1989).CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    D. Huse, Phys. Rev. B, 30, 3908–3915 (1984).CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, London (1982).MATHGoogle Scholar
  32. 32.
    T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Phys. Rev. B, 13, 316–374 (1976).CrossRefADSGoogle Scholar
  33. 33.
    E. Date et al., “Exactly solvable SOS models: II. Proof of the star-triangle relation and combinatorial identities,” in: Conformal Field Theory and Solvable Lattice Models (Adv. Stud. Pure Math., Vol. 16, M. Jimbo, T. Miwa, and A. Tsuchiya, eds.), Acad. Press, Orlando, Fla. (1988), pp. 17–122.Google Scholar
  34. 34.
    B. Feigin and E. Frenkel, Comm. Math. Phys., 178, 653–677 (1996); H. Awata, H. Kubo, S. Odake, and J. Shiraishi, Comm. Math. Phys., 179, 401–415 (1996).MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    M. Jumbo, M. Lashkevich, T. Miwa, and Y. Pugai, Phys. Lett. A, 229, 285–292 (1997).CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    V. Tarasov and A. Varchenko, Astérisque, 246, 1–135 (1997); arXiv:q-alg/9703044v3 (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASChernogolovka, Moscow OblastRussia
  2. 2.Laboratoire de Physique Théorique et AstroparticulesUniversité Montpellier 2MontpellierFrance

Personalised recommendations