Theoretical and Mathematical Physics

, Volume 154, Issue 3, pp 454–472 | Cite as

Multipoint correlation functions in Liouville field theory and minimal Liouville gravity

Abstract

We study (n+3)-point correlation functions of exponential fields in the Liouville field theory with n degenerate and three arbitrary fields and derive an analytic expression for these correlation functions in terms of Coulomb integrals. We consider the application of these results to the minimal Liouville gravity.

Keywords

conformal field theory integrable model Liouville theory noncritical string theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Polyakov, Phys. Lett. B, 103, 207–210 (1981).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    V. S. Dotsenko, Modern Phys. Lett. A, 6, 3601–3612 (1991).MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    P. Di Francesco and D. Kutasov, Nucl. Phys. B, 375, 119–170 (1992); arXiv:hep-th/9109005v1 (1991).CrossRefGoogle Scholar
  4. 4.
    Al. B. Zamolodchikov, Theor. Math. Phys., 142, 183–196 (2005); arXiv:hep-th/0505063v1 (2005).MathSciNetGoogle Scholar
  5. 5.
    A. A. Belavin and Al. B. Zamolodchikov, JETP Lett., 82, 7–13 (2005).CrossRefADSGoogle Scholar
  6. 6.
    A. A. Belavin and Al. B. Zamolodchikov, Theor. Math. Phys., 147, 729–754 (2006).CrossRefMathSciNetGoogle Scholar
  7. 7.
    I. K. Kostov and V. B. Petkova, Theor. Math. Phys., 146, 108–118 (2006); arXiv:hep-th/0505078v2 (2005).CrossRefMathSciNetGoogle Scholar
  8. 8.
    I. K. Kostov and V. B. Petkova, Nucl. Phys. B, 770, 273–331 (2007); arXiv:hep-th/0512346v4 (2005); Nucl. Phys. B, 769, 175–216 (2007); arXiv:hep-th/0609020v1 (2006).MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. A. Belavin, A. M. Polyakov, and Al. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984).MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B, 240, 312–348 (1984).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B, 251, 691–734 (1985).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. Goulian and M. Li, Phys. Rev. Lett., 66, 2051–2055 (1991).CrossRefADSGoogle Scholar
  13. 13.
    P. Baseilhac and V. A. Fateev, Nucl. Phys. B, 532, 567–587 (1998); arXiv:hep-th/9906010v2 (1999).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Dorn and H.-J. Otto, Phys. Lett. B, 291, 39–43 (1992); arXiv:hep-th/9206053v1 (1992).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    H. Dorn and H.-J. Otto, Nucl. Phys. B, 429, 375–388 (1994); arXiv:hep-th/9403141v3 (1994).MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    A. B. Zamolodchikov and Al. B. Zamolodchikov, Nucl. Phys. B, 477, 577–605 (1996); arXiv:hep-th/9506136v2 (1995).MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    V. A. Fateev and A. V. Litvinov, JETP Lett., 84, 531–536 (2007).CrossRefADSGoogle Scholar
  18. 18.
    V. A. Fateev and A. V. Litvinov, JETP Lett., 81, 594–598 (2005); arXiv:hep-th/0505120v1 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASChernogolovka, Moscow OblastRussia
  2. 2.Laboratoire de Physique Théorique et AstroparticulesUniversité Montpellier 2MontpellierFrance

Personalised recommendations