Advertisement

Theoretical and Mathematical Physics

, Volume 154, Issue 2, pp 220–226 | Cite as

Superposition formulas for integrable vector evolution equations

  • M. Yu. BalakhnevEmail author
Article

Abstract

We use the Bäcklund transformation to construct superposition formulas for solutions of some integrable vector equations.

Keywords

integrable vector evolution equation Bäcklund transformation Bianci diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Meshkov and V. V. Sokolov, Comm. Math. Phys., 232, 1–18 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    A. G. Meshkov and V. V. Sokolov, Theor. Math. Phys., 139, 609–622 (2004).CrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Yu. Balakhnev, Theor. Math. Phys., 142, 8–14 (2005).CrossRefMathSciNetGoogle Scholar
  4. 4.
    A. G. Meshkov and M. Ju. Balakhnev, SIGMA, 1, 027 (2005); arXiv:nlin/0512032v1 [nlin.SI] (2005).MathSciNetGoogle Scholar
  5. 5.
    M. Yu. Balakhnev, Math. Notes, 82, 448–450 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    L. Bianchi, Lezioni di Geometria Differenziale: Seconda edizione, riveduta e cosiderevolmente aumentata, in due volumi, Vol. 2, Enrico Spoerri, Pisa (1903), p. 418.zbMATHGoogle Scholar
  7. 7.
    I. Z. Golubchik and V. V. Sokolov, Theor. Math. Phys., 124, 909–917 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. K. Sklyanin, “On complete integrability of the Landau-Lifshitz equation,” Preprint E-3-79, LOMI, Leningrad (1979).zbMATHGoogle Scholar
  9. 9.
    M. Ju. Balakhnev, Appl. Math. Lett., 18, 1363–1372 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    S. I. Svinolupov and V. V. Sokolov, Theor. Math. Phys., 100, 959–962 (1994).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Orel Technical UniversityOrelRussia

Personalised recommendations