Advertisement

Theoretical and Mathematical Physics

, Volume 153, Issue 3, pp 1709–1731 | Cite as

Dimensional reduction of gravity and relation between static states, cosmologies, and waves

  • V. de AlfaroEmail author
  • A. T. Filippov
Article

Abstract

We introduce generalized dimensional reductions of an integrable (1+1)-dimensional dilaton gravity coupled to matter down to one-dimensional static states (black holes in particular), cosmological models, and waves. An unusual feature of these reductions is that the wave solutions depend on two variables: space and time. They are obtained here both by reducing the moduli space (available because of complete integrability) and by a generalized separation of variables (also applicable to nonintegrable models and to higher-dimensional theories). Among these new wavelike solutions, we find a class of solutions for which the matter fields are finite everywhere in space-time, including infinity. These considerations clearly demonstrate that a deep connection exists between static states, cosmologies, and waves. We argue that it should also exist in realistic higher-dimensional theories. Among other things, we also briefly outline the relations existing between the low-dimensional models that we discuss here and the realistic higher-dimensional ones.

Keywords

dilaton gravity dimensional reduction cosmology integrable model separation of variables gravity wave supergravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Padmanabhan, AIP Conf. Proc., 861, 179 (2006); arXiv:astro-ph/0603114v4 (2006).CrossRefADSGoogle Scholar
  2. 2.
    E. J. Copeland, M. Sami, and S. Tsujikawa, Internat. J. Mod. Phys.D, 15, 1753 (2006); arXiv:hep-th/0603057v3 (2006).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    S. Nojiri and S. Odintsov, Int. J. Geom. Meth. Mod. Phys., 4, 115 (2007); arXiv: hep-th/0601213v5 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. Sahni and A. Starobinsky, Internat. J. Mod. Phys. D, 15, 2105 (2006); arXiv: astro-ph/0610026v3 (2006).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    J. E. Lidsey, D. Wands, and E. J. Copeland, Phys. Rep., 337, 343 (2000).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    M. Gasperini and G. Veneziano, Phys. Rep., 373, 1 (2003).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    H. Stefani et al., Exact Solutions of the Einstein’s Field Equations, Cambridge Univ. Press, Cambridge (2002).Google Scholar
  8. 8.
    V. A. Belinskii and V. E. Zakharov, Sov. Phys. JETP, 48, 985 (1978).Google Scholar
  9. 9.
    D. Maison, Phys. Rev. Lett., 41, 521 (1978).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    H. Nicolai, D. Korotkin, and H. Samtleben, “Integrable classical and quantum gravity,” in: Quantum Fields and Quantum Space Time (NATO Adv. Sci. Inst. Ser. B. Phys., Vol. 364), Plenum, New York (1997), p. 203; arXiv:hep-th/9612065v1 (1996).Google Scholar
  11. 11.
    G. A. Alekseev, Theor. Math. Phys., 143, 720 (2005).CrossRefGoogle Scholar
  12. 12.
    C. Callan, S. Giddings, J. Harvey, and A. Strominger, Phys. Rev. D, 45, R1005 (1992).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    V. de Alfaro and A. T. Filippov, “Integrable low dimensional theories describing higher dimensional branes, black holes, and cosmologies,” arXiv:hep-th/0307269v1 (2003).Google Scholar
  14. 14.
    V. de Alfaro and A. T. Filippov, “Integrable low dimensional models for black holes and cosmologies from high dimensional theories,” arXiv:hep-th/0504101v1 (2005).Google Scholar
  15. 15.
    V. de Alfaro and A. T. Filippov, “Black holes and cosmological solutions in various dimensions,” (unpublished).Google Scholar
  16. 16.
    A. T. Filippov, Theor. Math. Phys., 146, 95 (2006); arXiv:hep-th/0505060v2 (2005).CrossRefGoogle Scholar
  17. 17.
    A. T. Filippov, “Some unusual dimensional reductions of gravity: Geometric potentials, separation of variables, and static-cosmological duality,” arXiv:hep-th/0605276v2 (2006).Google Scholar
  18. 18.
    V. de Alfaro and A. T. Filippov, “Dynamical dimensional reduction,” (unpublished)Google Scholar
  19. 19.
    A. T. Filippov, Modern Phys. Lett. A, 11, 1691 (1996); Internat. J. Mod. Phys. A, 12, 13 (1997).zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    J. R. Oppenheimer and H. Snyder, Phys. Rev. D, 55, 374 (1939).zbMATHCrossRefADSGoogle Scholar
  21. 21.
    M. Cavaglià, V. de Alfaro, and A. T. Filippov, Internat. J. Mod. Phys. D, 4, 661 (1995); 5, 227 (1996); 6, 39 (1997).CrossRefADSGoogle Scholar
  22. 22.
    A. Lukas, B. A. Ovrut, and D. Waldram, Phys. Lett. B, 393, 65 (1997).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    F. Larsen and F. Wilczek, Phys. Rev. D, 55, 4591 (1997).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    H. Lü, S. Mukherji, and C. N. Pope, Internat. J. Mod. Phys. A, 14, 4121 (1999).zbMATHCrossRefADSGoogle Scholar
  25. 25.
    Y. Kiem, C. Y. Lee, and D. Park, Phys. Rev. D, 57, 2381 (1998).CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    G. D. Dzhordzhadze, A. K. Pogrebkov, and M. C. Polivanov, “On the solutions with singularities of the Liouville equation,” Preprint IC/78/126, ICTP, Trieste (1978).Google Scholar
  27. 27.
    J. L. Gervais, Internat. J. Mod. Phys. A, 6, 2805 (1991).CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    A. N. Leznov and M. V. Saveliev, Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1985); English transl. (Progr. Phys., Vol. 15), Birkhäuser, Basel (1992).Google Scholar
  29. 29.
    L. Castellani, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, and M. Trigiante, Nucl. Phys. B, 527, 142 (1998).zbMATHCrossRefADSGoogle Scholar
  30. 30.
    P. Fré and A. Sorin, Nucl. Phys. B, 733, 334 (2006).zbMATHCrossRefADSGoogle Scholar
  31. 31.
    K. Stelle, “BPS branes in supergravity,” in: Quantum Field Theory: Perspective and Prospective (NATO Sci. Ser. C. Math. Phys. Sci., Vol. 530), Kluwer, Dordrecht (1999), p. 257; arXiv: hep-th/9803116v2 (1998).Google Scholar
  32. 32.
    T. Mohaupt, Class. Q. Grav., 17, 3429 (2000).zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    V. D. Ivashchuk and V. N. Melnikov, Class. Q. Grav., 18, R87 (2001).CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    G. P. Dzhordzhadze, A. K. Pogrebkov, and M. C. Polivanov, Theor. Math. Phys., 40, 706 (1979); G. P. Jorijadze, A. K. Pogrebkov, and M. C. Polivanov, J. Phys. A, 19, 121 (1986).CrossRefMathSciNetGoogle Scholar
  35. 35.
    E. D’Hoker and R. Jackiw, Phys. Rev. D, 26, 3517 (1982); Phys. Rev. Lett., 50, 1719 (1983).CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    A. Einstein and N. Rosen, J. Franklin Inst., 223, 43 (1937); N. Rosen, Phys. Z. Zowjetunion, 12, 366 (1937).zbMATHCrossRefGoogle Scholar
  37. 37.
    P. Szekeres, J. Math. Phys., 13, 286 (1972).CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    I. Ya. Aref’eva, K. S. Viswanathan, and I. V. Volovich, Nucl. Phys. B, 452, 346 (1995).CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    A. Feinstein, K. E. Kunze, and M. A. Vázquez-Mozo, Class. Q. Grav., 17, 3599 (2000).zbMATHCrossRefADSGoogle Scholar
  40. 40.
    V. Bozza and G. Veneziano, JHEP, 0010, 035 (2000).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Dipartmento di Fisica Teorica and INFNTorinoItalia
  2. 2.Accademia delle Scienze di TorinoTorinoItalia
  3. 3.Joint Institute for Nuclear ResearchDubna, Moscow OblastRussia

Personalised recommendations