Theoretical and Mathematical Physics

, Volume 153, Issue 1, pp 1373–1387 | Cite as

Model equation of the theory of solitons

  • V. É. Adler
  • A. B. Shabat


We consider the hierarchy of integrable (1+2)-dimensional equations related to the Lie algebra of vector fields on the line. We construct solutions in quadratures that contain n arbitrary functions of a single argument. A simple equation for the generating function of the hierarchy, which determines the dynamics in negative times and finds applications to second-order spectral problems, is of main interest. Considering its polynomial solutions under the condition that the corresponding potential is regular allows developing a rather general theory of integrable (1+1)-dimensional equations.


hierarchy of commuting vector fields Riemann invariant Dubrovin equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Martínez Alonso and A. B. Shabat, Phys. Lett. A, 300, 58–64 (2002); J. Nonlinear Math. Phys., 10, 229–242 (2003); Theor. Math. Phys., 140, 1073–1085 (2004); A. B. Shabat and L. Martínez Alonso, “On the prolongation of a hierarchy of hydrodynamic chains,” in: New Trends in Integrability and Partial Solvability (NATO Sci. Ser. II, Math. Phys. Chem., Vol. 132, A. B. Shabat et al., eds.), Kluwer, Dordrecht (2004), pp. 263–280.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    E. V. Ferapontov, K. R. Khusnutdinova, and M. V. Pavlov, Theor. Math. Phys., 144, 907–915 (2005); E. V. Ferapontov, K. R. Khusnutdinova, and S. P. Tsarev, Comm. Math. Phys., 261, 225–243 (2006).CrossRefMathSciNetGoogle Scholar
  3. 3.
    E. V. Ferapontov, Phys. Lett. A, 158, 112–118 (1991).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    A. B. Shabat, J. Nonlinear Math. Phys., 12, No. Suppl. 1, 614–624 (2005).CrossRefMathSciNetGoogle Scholar
  5. 5.
    N. Kh. Ibragimov and A. B. Shabat, Soviet Phys. Dokl., 24, No. 1, 15–17 (1979).zbMATHADSGoogle Scholar
  6. 6.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: Method of the Inverse Problem [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov Theory of Solitons: The Inverse Scattering Method, Plenum, New York (1984).zbMATHGoogle Scholar
  7. 7.
    A. Hone, V. S. Novikov, and C. Verhoeven, Inverse Problems, 22, 2001–2020 (2006).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASChernogolovka, Moscow OblastRussia

Personalised recommendations